Loading…
Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a leading candidate for a synaptic memory molecule because it is persistently activated after long-term potentiation (LTP) induction and because mutations that block this persistent activity prevent LTP and learning. Previous work showed tha...
Saved in:
Published in: | The Journal of neuroscience 2004-10, Vol.24 (42), p.9324-9331 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Calcium/calmodulin-dependent protein kinase II (CaMKII) is a leading candidate for a synaptic memory molecule because it is persistently activated after long-term potentiation (LTP) induction and because mutations that block this persistent activity prevent LTP and learning. Previous work showed that synaptic stimulation causes a rapidly reversible translocation of CaMKII to the synaptic region. We have now measured green fluorescent protein (GFP)-CaMKIIalpha translocation into synaptic spines during NMDA receptor-dependent chemical LTP (cLTP) and find that under these conditions, translocation is persistent. Using red fluorescent protein as a cell morphology marker, we found that there are two components of the persistent accumulation. cLTP produces a persistent increase in spine volume, and some of the increase in GFP-CaMKIIalpha is secondary to this volume change. In addition, cLTP results in a dramatic increase in the bound fraction of GFP-CaMKIIalpha in spines. To further study the bound pool, immunogold electron microscopy was used to measure CaMKIIalpha in the postsynaptic density (PSD), an important regulator of synaptic function. cLTP produced a persistent increase in the PSD-associated pool of CaMKIIalpha. These results are consistent with the hypothesis that CaMKIIalpha accumulation at synapses is a memory trace of past synaptic activity. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.2350-04.2004 |