Loading…
Impact of electrical stimulation on three‐dimensional myoblast cultures ‐ a real‐time RT‐PCR study
Several focal skeletal muscle diseases, including tumours and trauma lead to a limited loss of functional muscle tissue. There is still no suitable clinical approach for treating such defects. A promising approach could be the tissue engineering of skeletal muscle. However, a clinically reliable dif...
Saved in:
Published in: | Journal of cellular and molecular medicine 2005-10, Vol.9 (4), p.883-892 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6403-58e21e9b09a1bddefa76ec061aae92f4c949d3f9cf1feb114f09f989a45de5c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c6403-58e21e9b09a1bddefa76ec061aae92f4c949d3f9cf1feb114f09f989a45de5c13 |
container_end_page | 892 |
container_issue | 4 |
container_start_page | 883 |
container_title | Journal of cellular and molecular medicine |
container_volume | 9 |
creator | Stern‐Straeter, J. Bach, A.D. Stangenberg, L. Foerster, V.T. Horch, R.E. Stark, G.B. Beier, J.P. |
description | Several focal skeletal muscle diseases, including tumours and trauma lead to a limited loss of functional muscle tissue. There is still no suitable clinical approach for treating such defects. A promising approach could be the tissue engineering of skeletal muscle. However, a clinically reliable differentiation stimulus for three‐dimensional (3‐D) cultures is necessary for this process, and this condition has not yet been established. In order to qunantify and analyze the differentiation potential of electrical cell stimulation, primary myoblasts were stimulated within a 3‐D fibrin‐matrix. Gene expression of MyoD, myogenin and AChR were measured by real‐time RT‐PCR over a time period of eight days, showing immediate down‐regulation of all marker genes. For tissue engineering approaches, cell multiplication is crucial for acquisition of sufficient tissue volumes for reconstruction. Therefore, all experiments were performed with high and low passaged myoblasts, demonstrating higher transcript rates of marker genes in lowpassage cells. Our findings strongly suggest a reconsideration of electrical stimulation in muscle tissue engineering. |
doi_str_mv | 10.1111/j.1582-4934.2005.tb00386.x |
format | article |
fullrecord | <record><control><sourceid>gale_PIMPY</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730878339</galeid><sourcerecordid>A730878339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6403-58e21e9b09a1bddefa76ec061aae92f4c949d3f9cf1feb114f09f989a45de5c13</originalsourceid><addsrcrecordid>eNqVkt1uFCEUxydGY-vqK5hJTbzbEQaWAS80zcaPmjaapl4Thjm0bJihhRnt3vkIPqNP4pnspn4kXggknMDv_IHDvyiOKKkothebiq5kveSK8aomZFWNLSFMiur2XnF4t3V_H1PJ5EHxKOcNQoIy9bA4oIIJTlVzWGxO-mtjxzK6EgLYMXlrQplH30_BjD4OJY7xKgH8-Pa98z0MGRcR6bexDSaPpZ3COCXIJQKlKROYgBEKQHl-gdGn9TnqTd32cfHAmZDhyX5eFJ_fvrlYv1-efnx3sj4-XVrBCVuuJNQUVEuUoW3XgTONAEsENQZU7bhVXHXMKeuog5ZS7ohySirDVx2sLGWL4tVO93pqe-gsDGMyQV8n35u01dF4_efO4K_0ZfyiRcMJkRIFnu8FUryZII-699lCCGaAOGUtpKKMMoHgs7_ATZwSVidrRhreCNXgTyyKo39RNW1ow2syQ9UOujQBtB9cxKtZ7B303sYBnMf144YR2UjG5oSXuwSbYs4J3N0DKdGzTfRGz_-vZy_o2SZ6bxN9i8lPfy_Rr9S9LxB4vQO-4rHb_5DWH9ZnZ1hD9hMCTNLV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217174209</pqid></control><display><type>article</type><title>Impact of electrical stimulation on three‐dimensional myoblast cultures ‐ a real‐time RT‐PCR study</title><source>Publicly Available Content Database</source><creator>Stern‐Straeter, J. ; Bach, A.D. ; Stangenberg, L. ; Foerster, V.T. ; Horch, R.E. ; Stark, G.B. ; Beier, J.P.</creator><creatorcontrib>Stern‐Straeter, J. ; Bach, A.D. ; Stangenberg, L. ; Foerster, V.T. ; Horch, R.E. ; Stark, G.B. ; Beier, J.P.</creatorcontrib><description>Several focal skeletal muscle diseases, including tumours and trauma lead to a limited loss of functional muscle tissue. There is still no suitable clinical approach for treating such defects. A promising approach could be the tissue engineering of skeletal muscle. However, a clinically reliable differentiation stimulus for three‐dimensional (3‐D) cultures is necessary for this process, and this condition has not yet been established. In order to qunantify and analyze the differentiation potential of electrical cell stimulation, primary myoblasts were stimulated within a 3‐D fibrin‐matrix. Gene expression of MyoD, myogenin and AChR were measured by real‐time RT‐PCR over a time period of eight days, showing immediate down‐regulation of all marker genes. For tissue engineering approaches, cell multiplication is crucial for acquisition of sufficient tissue volumes for reconstruction. Therefore, all experiments were performed with high and low passaged myoblasts, demonstrating higher transcript rates of marker genes in lowpassage cells. Our findings strongly suggest a reconsideration of electrical stimulation in muscle tissue engineering.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2005.tb00386.x</identifier><identifier>PMID: 16364197</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>3‐D cell culture ; Analysis ; Animals ; Cell Differentiation ; Cells, Cultured ; DNA Primers - chemistry ; DNA, Complementary - metabolism ; Down-Regulation ; Electric Stimulation ; electrical stimulation ; Electrical stimuli ; Fibrin ; Fibrin - chemistry ; Gene Expression ; Gene Expression Regulation ; Gene regulation ; Gene therapy ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles ; Musculoskeletal system ; myoblast differentiation ; Myoblasts ; Myoblasts - metabolism ; MyoD protein ; Myogenin ; Myogenin - metabolism ; Polymerase chain reaction ; Rats ; Rats, Inbred WKY ; real‐time RT‐PCR ; Receptors, Cholinergic - metabolism ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA - metabolism ; Skeletal muscle ; skeletal muscle tissue engineering ; Time Factors ; Tissue Engineering</subject><ispartof>Journal of cellular and molecular medicine, 2005-10, Vol.9 (4), p.883-892</ispartof><rights>COPYRIGHT 2005 John Wiley & Sons, Inc.</rights><rights>Copyright Laurentiu Mircea POPESCU Oct-Dec 2005</rights><rights>2005. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6403-58e21e9b09a1bddefa76ec061aae92f4c949d3f9cf1feb114f09f989a45de5c13</citedby><cites>FETCH-LOGICAL-c6403-58e21e9b09a1bddefa76ec061aae92f4c949d3f9cf1feb114f09f989a45de5c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/217174209/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/217174209?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,11542,25732,27903,27904,36991,36992,44569,46030,46454,53769,53771,74872</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/publiccontent/docview/217174209?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16364197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stern‐Straeter, J.</creatorcontrib><creatorcontrib>Bach, A.D.</creatorcontrib><creatorcontrib>Stangenberg, L.</creatorcontrib><creatorcontrib>Foerster, V.T.</creatorcontrib><creatorcontrib>Horch, R.E.</creatorcontrib><creatorcontrib>Stark, G.B.</creatorcontrib><creatorcontrib>Beier, J.P.</creatorcontrib><title>Impact of electrical stimulation on three‐dimensional myoblast cultures ‐ a real‐time RT‐PCR study</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Several focal skeletal muscle diseases, including tumours and trauma lead to a limited loss of functional muscle tissue. There is still no suitable clinical approach for treating such defects. A promising approach could be the tissue engineering of skeletal muscle. However, a clinically reliable differentiation stimulus for three‐dimensional (3‐D) cultures is necessary for this process, and this condition has not yet been established. In order to qunantify and analyze the differentiation potential of electrical cell stimulation, primary myoblasts were stimulated within a 3‐D fibrin‐matrix. Gene expression of MyoD, myogenin and AChR were measured by real‐time RT‐PCR over a time period of eight days, showing immediate down‐regulation of all marker genes. For tissue engineering approaches, cell multiplication is crucial for acquisition of sufficient tissue volumes for reconstruction. Therefore, all experiments were performed with high and low passaged myoblasts, demonstrating higher transcript rates of marker genes in lowpassage cells. Our findings strongly suggest a reconsideration of electrical stimulation in muscle tissue engineering.</description><subject>3‐D cell culture</subject><subject>Analysis</subject><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>DNA Primers - chemistry</subject><subject>DNA, Complementary - metabolism</subject><subject>Down-Regulation</subject><subject>Electric Stimulation</subject><subject>electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Fibrin</subject><subject>Fibrin - chemistry</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation</subject><subject>Gene therapy</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>myoblast differentiation</subject><subject>Myoblasts</subject><subject>Myoblasts - metabolism</subject><subject>MyoD protein</subject><subject>Myogenin</subject><subject>Myogenin - metabolism</subject><subject>Polymerase chain reaction</subject><subject>Rats</subject><subject>Rats, Inbred WKY</subject><subject>real‐time RT‐PCR</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA - metabolism</subject><subject>Skeletal muscle</subject><subject>skeletal muscle tissue engineering</subject><subject>Time Factors</subject><subject>Tissue Engineering</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqVkt1uFCEUxydGY-vqK5hJTbzbEQaWAS80zcaPmjaapl4Thjm0bJihhRnt3vkIPqNP4pnspn4kXggknMDv_IHDvyiOKKkothebiq5kveSK8aomZFWNLSFMiur2XnF4t3V_H1PJ5EHxKOcNQoIy9bA4oIIJTlVzWGxO-mtjxzK6EgLYMXlrQplH30_BjD4OJY7xKgH8-Pa98z0MGRcR6bexDSaPpZ3COCXIJQKlKROYgBEKQHl-gdGn9TnqTd32cfHAmZDhyX5eFJ_fvrlYv1-efnx3sj4-XVrBCVuuJNQUVEuUoW3XgTONAEsENQZU7bhVXHXMKeuog5ZS7ohySirDVx2sLGWL4tVO93pqe-gsDGMyQV8n35u01dF4_efO4K_0ZfyiRcMJkRIFnu8FUryZII-699lCCGaAOGUtpKKMMoHgs7_ATZwSVidrRhreCNXgTyyKo39RNW1ow2syQ9UOujQBtB9cxKtZ7B303sYBnMf144YR2UjG5oSXuwSbYs4J3N0DKdGzTfRGz_-vZy_o2SZ6bxN9i8lPfy_Rr9S9LxB4vQO-4rHb_5DWH9ZnZ1hD9hMCTNLV</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Stern‐Straeter, J.</creator><creator>Bach, A.D.</creator><creator>Stangenberg, L.</creator><creator>Foerster, V.T.</creator><creator>Horch, R.E.</creator><creator>Stark, G.B.</creator><creator>Beier, J.P.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>BBNVY</scope><scope>BHPHI</scope><scope>FR3</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200510</creationdate><title>Impact of electrical stimulation on three‐dimensional myoblast cultures ‐ a real‐time RT‐PCR study</title><author>Stern‐Straeter, J. ; Bach, A.D. ; Stangenberg, L. ; Foerster, V.T. ; Horch, R.E. ; Stark, G.B. ; Beier, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6403-58e21e9b09a1bddefa76ec061aae92f4c949d3f9cf1feb114f09f989a45de5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>3‐D cell culture</topic><topic>Analysis</topic><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>DNA Primers - chemistry</topic><topic>DNA, Complementary - metabolism</topic><topic>Down-Regulation</topic><topic>Electric Stimulation</topic><topic>electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Fibrin</topic><topic>Fibrin - chemistry</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation</topic><topic>Gene therapy</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>myoblast differentiation</topic><topic>Myoblasts</topic><topic>Myoblasts - metabolism</topic><topic>MyoD protein</topic><topic>Myogenin</topic><topic>Myogenin - metabolism</topic><topic>Polymerase chain reaction</topic><topic>Rats</topic><topic>Rats, Inbred WKY</topic><topic>real‐time RT‐PCR</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA - metabolism</topic><topic>Skeletal muscle</topic><topic>skeletal muscle tissue engineering</topic><topic>Time Factors</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stern‐Straeter, J.</creatorcontrib><creatorcontrib>Bach, A.D.</creatorcontrib><creatorcontrib>Stangenberg, L.</creatorcontrib><creatorcontrib>Foerster, V.T.</creatorcontrib><creatorcontrib>Horch, R.E.</creatorcontrib><creatorcontrib>Stark, G.B.</creatorcontrib><creatorcontrib>Beier, J.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Biological Science Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Engineering Research Database</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stern‐Straeter, J.</au><au>Bach, A.D.</au><au>Stangenberg, L.</au><au>Foerster, V.T.</au><au>Horch, R.E.</au><au>Stark, G.B.</au><au>Beier, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of electrical stimulation on three‐dimensional myoblast cultures ‐ a real‐time RT‐PCR study</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2005-10</date><risdate>2005</risdate><volume>9</volume><issue>4</issue><spage>883</spage><epage>892</epage><pages>883-892</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Several focal skeletal muscle diseases, including tumours and trauma lead to a limited loss of functional muscle tissue. There is still no suitable clinical approach for treating such defects. A promising approach could be the tissue engineering of skeletal muscle. However, a clinically reliable differentiation stimulus for three‐dimensional (3‐D) cultures is necessary for this process, and this condition has not yet been established. In order to qunantify and analyze the differentiation potential of electrical cell stimulation, primary myoblasts were stimulated within a 3‐D fibrin‐matrix. Gene expression of MyoD, myogenin and AChR were measured by real‐time RT‐PCR over a time period of eight days, showing immediate down‐regulation of all marker genes. For tissue engineering approaches, cell multiplication is crucial for acquisition of sufficient tissue volumes for reconstruction. Therefore, all experiments were performed with high and low passaged myoblasts, demonstrating higher transcript rates of marker genes in lowpassage cells. Our findings strongly suggest a reconsideration of electrical stimulation in muscle tissue engineering.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16364197</pmid><doi>10.1111/j.1582-4934.2005.tb00386.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2005-10, Vol.9 (4), p.883-892 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740088 |
source | Publicly Available Content Database |
subjects | 3‐D cell culture Analysis Animals Cell Differentiation Cells, Cultured DNA Primers - chemistry DNA, Complementary - metabolism Down-Regulation Electric Stimulation electrical stimulation Electrical stimuli Fibrin Fibrin - chemistry Gene Expression Gene Expression Regulation Gene regulation Gene therapy Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscles Musculoskeletal system myoblast differentiation Myoblasts Myoblasts - metabolism MyoD protein Myogenin Myogenin - metabolism Polymerase chain reaction Rats Rats, Inbred WKY real‐time RT‐PCR Receptors, Cholinergic - metabolism Reverse Transcriptase Polymerase Chain Reaction - methods RNA - metabolism Skeletal muscle skeletal muscle tissue engineering Time Factors Tissue Engineering |
title | Impact of electrical stimulation on three‐dimensional myoblast cultures ‐ a real‐time RT‐PCR study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_PIMPY&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20electrical%20stimulation%20on%20three%E2%80%90dimensional%20myoblast%20cultures%20%E2%80%90%20a%20real%E2%80%90time%20RT%E2%80%90PCR%20study&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Stern%E2%80%90Straeter,%20J.&rft.date=2005-10&rft.volume=9&rft.issue=4&rft.spage=883&rft.epage=892&rft.pages=883-892&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2005.tb00386.x&rft_dat=%3Cgale_PIMPY%3EA730878339%3C/gale_PIMPY%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6403-58e21e9b09a1bddefa76ec061aae92f4c949d3f9cf1feb114f09f989a45de5c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217174209&rft_id=info:pmid/16364197&rft_galeid=A730878339&rfr_iscdi=true |