Loading…

Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly

Flies rely heavily on visual motion cues for course control. This is mediated by a small set of motion-sensitive neurons called lobula plate tangential cells. A single class of these, the centrifugal horizontal (CH) neurons, play an important role in two pathways: figure-ground discrimination and fl...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2003-10, Vol.23 (30), p.9805-9811
Main Authors: Farrow, Karl, Haag, Juergen, Borst, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-d45fa694b3b91c9e75dd4f85694d217b9986c86428aeb0ec3fd0946e7d3138553
cites
container_end_page 9811
container_issue 30
container_start_page 9805
container_title The Journal of neuroscience
container_volume 23
creator Farrow, Karl
Haag, Juergen
Borst, Alexander
description Flies rely heavily on visual motion cues for course control. This is mediated by a small set of motion-sensitive neurons called lobula plate tangential cells. A single class of these, the centrifugal horizontal (CH) neurons, play an important role in two pathways: figure-ground discrimination and flow-field selectivity. As was recently found, the dendrites of CH cells are electrically coupled with the dendritic tree of another class of neurons sensitive to horizontal image motion, the horizontal system (HS) cells. However, whether motion information arrives independently at both of these cells or is passed from one to the other is not known. Here, we examine the ipsilateral input circuitry to HS and CH neurons by selective laser ablation of individual interneurons. We find that the response of CH neurons to motion presented in front of the ipsilateral eye is entirely abolished after ablation of HS cells. In contrast, the motion response of HS cells persists after the ablation of CH cells. We conclude that HS cells receive direct motion input from local motion elements, whereas CH cells do not; their motion response is driven by HS cells. This connection scheme is discussed with reference to how the dendritic networks involved in figure-ground detection and flow-field selectivity might operate.
doi_str_mv 10.1523/jneurosci.23-30-09805.2003
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71343974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-d45fa694b3b91c9e75dd4f85694d217b9986c86428aeb0ec3fd0946e7d3138553</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1ERZfCX0ARBzhlO47t2OaABKsCW3W7EqVny3GcXVdeZxsnjcqvx2FXUE6cPJ755umNHkJvMcwxK8j5XbBD10bj5gXJCeQgBbB5AUCeoVkiZF5QwM_RDAoOeUk5PUUvY7wDAA6Yv0CnmDJRAogZWi3DfuizdbfRwf3UvWtD1jbZavC9a4Zgpob22aqdivzGhuh692Cz68lCiJkLWb-12Wffjo1_fIVOGu2jfX18z9Dtl4sfi2_51frrcvHpKjeM4T6vKWt0KWlFKomNtJzVNW0ES626wLySUpRGlLQQ2lZgDWlqkLS0vCaYCMbIGfp40N0P1c7Wxoa-017tO7fT3aNqtVP_ToLbqk37oEpOQYhJ4N1RoGvvBxt7tXPRWO91sO0QFceEEsnpf0EsMYPkPIEfDqBJ0cTONn_cYFBTbOry-uL2-_pmsVTpQ0D9jk1NsaXlN0_v-bt6zCkB7w_A1m22o-usijvtfcKxGsfxIDjpkV94WKUc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19150856</pqid></control><display><type>article</type><title>Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly</title><source>PubMed Central</source><creator>Farrow, Karl ; Haag, Juergen ; Borst, Alexander</creator><creatorcontrib>Farrow, Karl ; Haag, Juergen ; Borst, Alexander</creatorcontrib><description>Flies rely heavily on visual motion cues for course control. This is mediated by a small set of motion-sensitive neurons called lobula plate tangential cells. A single class of these, the centrifugal horizontal (CH) neurons, play an important role in two pathways: figure-ground discrimination and flow-field selectivity. As was recently found, the dendrites of CH cells are electrically coupled with the dendritic tree of another class of neurons sensitive to horizontal image motion, the horizontal system (HS) cells. However, whether motion information arrives independently at both of these cells or is passed from one to the other is not known. Here, we examine the ipsilateral input circuitry to HS and CH neurons by selective laser ablation of individual interneurons. We find that the response of CH neurons to motion presented in front of the ipsilateral eye is entirely abolished after ablation of HS cells. In contrast, the motion response of HS cells persists after the ablation of CH cells. We conclude that HS cells receive direct motion input from local motion elements, whereas CH cells do not; their motion response is driven by HS cells. This connection scheme is discussed with reference to how the dendritic networks involved in figure-ground detection and flow-field selectivity might operate.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.23-30-09805.2003</identifier><identifier>PMID: 14586008</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Behavioral/Systems/Cognitive ; Calliphora ; Dendrites - physiology ; Diptera - physiology ; Electrophysiology ; Female ; In Vitro Techniques ; Interneurons - physiology ; Lasers ; Motion Perception - physiology ; Neurons - physiology ; Neuropil - physiology ; Optic Lobe, Nonmammalian - cytology ; Optic Lobe, Nonmammalian - physiology ; Photic Stimulation</subject><ispartof>The Journal of neuroscience, 2003-10, Vol.23 (30), p.9805-9811</ispartof><rights>Copyright © 2003 Society for Neuroscience 0270-6474/03/239805-07.00/0 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-d45fa694b3b91c9e75dd4f85694d217b9986c86428aeb0ec3fd0946e7d3138553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740885/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740885/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14586008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farrow, Karl</creatorcontrib><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><title>Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Flies rely heavily on visual motion cues for course control. This is mediated by a small set of motion-sensitive neurons called lobula plate tangential cells. A single class of these, the centrifugal horizontal (CH) neurons, play an important role in two pathways: figure-ground discrimination and flow-field selectivity. As was recently found, the dendrites of CH cells are electrically coupled with the dendritic tree of another class of neurons sensitive to horizontal image motion, the horizontal system (HS) cells. However, whether motion information arrives independently at both of these cells or is passed from one to the other is not known. Here, we examine the ipsilateral input circuitry to HS and CH neurons by selective laser ablation of individual interneurons. We find that the response of CH neurons to motion presented in front of the ipsilateral eye is entirely abolished after ablation of HS cells. In contrast, the motion response of HS cells persists after the ablation of CH cells. We conclude that HS cells receive direct motion input from local motion elements, whereas CH cells do not; their motion response is driven by HS cells. This connection scheme is discussed with reference to how the dendritic networks involved in figure-ground detection and flow-field selectivity might operate.</description><subject>Animals</subject><subject>Behavioral/Systems/Cognitive</subject><subject>Calliphora</subject><subject>Dendrites - physiology</subject><subject>Diptera - physiology</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>In Vitro Techniques</subject><subject>Interneurons - physiology</subject><subject>Lasers</subject><subject>Motion Perception - physiology</subject><subject>Neurons - physiology</subject><subject>Neuropil - physiology</subject><subject>Optic Lobe, Nonmammalian - cytology</subject><subject>Optic Lobe, Nonmammalian - physiology</subject><subject>Photic Stimulation</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS1ERZfCX0ARBzhlO47t2OaABKsCW3W7EqVny3GcXVdeZxsnjcqvx2FXUE6cPJ755umNHkJvMcwxK8j5XbBD10bj5gXJCeQgBbB5AUCeoVkiZF5QwM_RDAoOeUk5PUUvY7wDAA6Yv0CnmDJRAogZWi3DfuizdbfRwf3UvWtD1jbZavC9a4Zgpob22aqdivzGhuh692Cz68lCiJkLWb-12Wffjo1_fIVOGu2jfX18z9Dtl4sfi2_51frrcvHpKjeM4T6vKWt0KWlFKomNtJzVNW0ES626wLySUpRGlLQQ2lZgDWlqkLS0vCaYCMbIGfp40N0P1c7Wxoa-017tO7fT3aNqtVP_ToLbqk37oEpOQYhJ4N1RoGvvBxt7tXPRWO91sO0QFceEEsnpf0EsMYPkPIEfDqBJ0cTONn_cYFBTbOry-uL2-_pmsVTpQ0D9jk1NsaXlN0_v-bt6zCkB7w_A1m22o-usijvtfcKxGsfxIDjpkV94WKUc</recordid><startdate>20031029</startdate><enddate>20031029</enddate><creator>Farrow, Karl</creator><creator>Haag, Juergen</creator><creator>Borst, Alexander</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031029</creationdate><title>Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly</title><author>Farrow, Karl ; Haag, Juergen ; Borst, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-d45fa694b3b91c9e75dd4f85694d217b9986c86428aeb0ec3fd0946e7d3138553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Behavioral/Systems/Cognitive</topic><topic>Calliphora</topic><topic>Dendrites - physiology</topic><topic>Diptera - physiology</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>In Vitro Techniques</topic><topic>Interneurons - physiology</topic><topic>Lasers</topic><topic>Motion Perception - physiology</topic><topic>Neurons - physiology</topic><topic>Neuropil - physiology</topic><topic>Optic Lobe, Nonmammalian - cytology</topic><topic>Optic Lobe, Nonmammalian - physiology</topic><topic>Photic Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farrow, Karl</creatorcontrib><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farrow, Karl</au><au>Haag, Juergen</au><au>Borst, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2003-10-29</date><risdate>2003</risdate><volume>23</volume><issue>30</issue><spage>9805</spage><epage>9811</epage><pages>9805-9811</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Flies rely heavily on visual motion cues for course control. This is mediated by a small set of motion-sensitive neurons called lobula plate tangential cells. A single class of these, the centrifugal horizontal (CH) neurons, play an important role in two pathways: figure-ground discrimination and flow-field selectivity. As was recently found, the dendrites of CH cells are electrically coupled with the dendritic tree of another class of neurons sensitive to horizontal image motion, the horizontal system (HS) cells. However, whether motion information arrives independently at both of these cells or is passed from one to the other is not known. Here, we examine the ipsilateral input circuitry to HS and CH neurons by selective laser ablation of individual interneurons. We find that the response of CH neurons to motion presented in front of the ipsilateral eye is entirely abolished after ablation of HS cells. In contrast, the motion response of HS cells persists after the ablation of CH cells. We conclude that HS cells receive direct motion input from local motion elements, whereas CH cells do not; their motion response is driven by HS cells. This connection scheme is discussed with reference to how the dendritic networks involved in figure-ground detection and flow-field selectivity might operate.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>14586008</pmid><doi>10.1523/jneurosci.23-30-09805.2003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2003-10, Vol.23 (30), p.9805-9811
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740885
source PubMed Central
subjects Animals
Behavioral/Systems/Cognitive
Calliphora
Dendrites - physiology
Diptera - physiology
Electrophysiology
Female
In Vitro Techniques
Interneurons - physiology
Lasers
Motion Perception - physiology
Neurons - physiology
Neuropil - physiology
Optic Lobe, Nonmammalian - cytology
Optic Lobe, Nonmammalian - physiology
Photic Stimulation
title Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input%20Organization%20of%20Multifunctional%20Motion-Sensitive%20Neurons%20in%20the%20Blowfly&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Farrow,%20Karl&rft.date=2003-10-29&rft.volume=23&rft.issue=30&rft.spage=9805&rft.epage=9811&rft.pages=9805-9811&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.23-30-09805.2003&rft_dat=%3Cproquest_pubme%3E71343974%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-d45fa694b3b91c9e75dd4f85694d217b9986c86428aeb0ec3fd0946e7d3138553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19150856&rft_id=info:pmid/14586008&rfr_iscdi=true