Loading…
Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis
The peptides alpha-melanocyte stimulating hormone (alpha-MSH) and oxytocin, when administered centrally, produce similar behavioral effects. alpha-MSH induces Fos expression in supraoptic oxytocin neurons, and alpha-MSH melanocortin-4 receptors (MC4Rs) are highly expressed in the supraoptic nucleus,...
Saved in:
Published in: | The Journal of neuroscience 2003-11, Vol.23 (32), p.10351-10358 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The peptides alpha-melanocyte stimulating hormone (alpha-MSH) and oxytocin, when administered centrally, produce similar behavioral effects. alpha-MSH induces Fos expression in supraoptic oxytocin neurons, and alpha-MSH melanocortin-4 receptors (MC4Rs) are highly expressed in the supraoptic nucleus, suggesting that alpha-MSH and oxytocin actions are not independent. Here we investigated the effects of alpha-MSH on the activity of supraoptic neurons. We confirmed that alpha-MSH induces Fos expression in the supraoptic nucleus when injected centrally and demonstrated that alpha-MSH also stimulates Fos expression in the nucleus when applied locally by retrodialysis. Thus alpha-MSH-induced Fos expression is not associated with electrophysiological excitation of supraoptic neurons because central injection of alpha-MSH or selective MC4 receptor agonists inhibited the electrical activity of oxytocin neurons in the supraoptic nucleus recorded in vivo. Consistent with these observations, oxytocin secretion into the bloodstream decreased after central injection of alpha-MSH. However, MC4R ligands induced substantial release of oxytocin from dendrites in isolated supraoptic nuclei. Because dendritic oxytocin release can be triggered by changes in [Ca2+]i, we measured [Ca2+]i responses in isolated supraoptic neurons and found that MC4R ligands induce a transient [Ca2+]i increase in oxytocin neurons. This response was still observed in low extracellular Ca2+ concentration and probably reflects mobilization of [Ca2+]i from intracellular stores rather than entry via voltage-gated channels. Taken together, these results show for the first time that a peptide, here alpha-MSH, can induce differential regulation of dendritic release and systemic secretion of oxytocin, accompanied by dissociation of Fos expression and electrical activity. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.23-32-10351.2003 |