Loading…

Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity

Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differe...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2019-09, Vol.294 (37), p.13530-13544
Main Authors: Bhat, Suraj P., Gangalum, Rajendra K., Kim, Dongjae, Mangul, Serghei, Kashyap, Raj K., Zhou, Xinkai, Elashoff, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3
cites cdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3
container_end_page 13544
container_issue 37
container_start_page 13530
container_title The Journal of biological chemistry
container_volume 294
creator Bhat, Suraj P.
Gangalum, Rajendra K.
Kim, Dongjae
Mangul, Serghei
Kashyap, Raj K.
Zhou, Xinkai
Elashoff, David
description Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease.
doi_str_mv 10.1074/jbc.RA119.008853
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6746439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820331902</els_id><sourcerecordid>2248374423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYNY7Lb67pPk0ZdZ8282GR-EUrQKhUJpwbeQzdzspMwkY5Jd6Bfx85pxa9EHQ-AG7u-cJPcg9JaSNSVSfHjY2vXtBaXdmhClWv4CrShRvOEt_f4SrQhhtOlYq07RWc4PpC7R0VfolFMmOCV8hX7eJROyTX4uPgYz4jlF50cfdjg6nGsdATu_hYQtjGPGPmCDyyLaQfAWzyaZ3u-mBTehtgdIvkCP7eDHfoixnkypkC04wQFM9TDbDMHCIpniCHY_moQHKJBiNQVfHl-jE1dJePNUz9H9l893l1-b65urb5cX140VQpZGAumIJaAkBWc3lEHvjLOtVLIHIhm3XIFxGysZAU5bVbfpW2DEEeUA-Dn6dPSd99sJeguhfm3Uc_KTSY86Gq__7QQ_6F086I0UG8G7avD-ySDFH3vIRU8-L5MyAeI-a8aE4lIIxitKjqhNMecE7vkaSvQSp65x6t9x6mOcVfLu7-c9C_7kV4GPRwDqkA4eks7WL7PtfQJbdB_9_91_AdG2tO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248374423</pqid></control><display><type>article</type><title>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</title><source>ScienceDirect Freedom Collection</source><source>PubMed Central</source><creator>Bhat, Suraj P. ; Gangalum, Rajendra K. ; Kim, Dongjae ; Mangul, Serghei ; Kashyap, Raj K. ; Zhou, Xinkai ; Elashoff, David</creator><creatorcontrib>Bhat, Suraj P. ; Gangalum, Rajendra K. ; Kim, Dongjae ; Mangul, Serghei ; Kashyap, Raj K. ; Zhou, Xinkai ; Elashoff, David</creatorcontrib><description>Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.008853</identifier><identifier>PMID: 31243103</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; cataract ; Cataract - genetics ; Cataract - metabolism ; Cell Differentiation - genetics ; crystallin ; crystallin gene expression ; Crystallins - genetics ; Crystallins - metabolism ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Female ; gene expression ; Gene Expression Profiling - methods ; genetic cataract ; Humans ; lens ; Lens, Crystalline - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Bases of Disease ; Retina - embryology ; RNA, Messenger - genetics ; single cells ; Single-Cell Analysis - methods ; spatial transcriptomics ; transcription ; Transcriptome - genetics ; vision</subject><ispartof>The Journal of biological chemistry, 2019-09, Vol.294 (37), p.13530-13544</ispartof><rights>2019 © 2019 Bhat et al.</rights><rights>2019 Bhat et al.</rights><rights>2019 Bhat et al. 2019 Bhat et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</citedby><cites>FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</cites><orcidid>0000-0002-8746-0266 ; 0000-0002-4911-5656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746439/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820331902$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31243103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhat, Suraj P.</creatorcontrib><creatorcontrib>Gangalum, Rajendra K.</creatorcontrib><creatorcontrib>Kim, Dongjae</creatorcontrib><creatorcontrib>Mangul, Serghei</creatorcontrib><creatorcontrib>Kashyap, Raj K.</creatorcontrib><creatorcontrib>Zhou, Xinkai</creatorcontrib><creatorcontrib>Elashoff, David</creatorcontrib><title>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>cataract</subject><subject>Cataract - genetics</subject><subject>Cataract - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>crystallin</subject><subject>crystallin gene expression</subject><subject>Crystallins - genetics</subject><subject>Crystallins - metabolism</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Female</subject><subject>gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>genetic cataract</subject><subject>Humans</subject><subject>lens</subject><subject>Lens, Crystalline - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Bases of Disease</subject><subject>Retina - embryology</subject><subject>RNA, Messenger - genetics</subject><subject>single cells</subject><subject>Single-Cell Analysis - methods</subject><subject>spatial transcriptomics</subject><subject>transcription</subject><subject>Transcriptome - genetics</subject><subject>vision</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kV9rFDEUxYNY7Lb67pPk0ZdZ8282GR-EUrQKhUJpwbeQzdzspMwkY5Jd6Bfx85pxa9EHQ-AG7u-cJPcg9JaSNSVSfHjY2vXtBaXdmhClWv4CrShRvOEt_f4SrQhhtOlYq07RWc4PpC7R0VfolFMmOCV8hX7eJROyTX4uPgYz4jlF50cfdjg6nGsdATu_hYQtjGPGPmCDyyLaQfAWzyaZ3u-mBTehtgdIvkCP7eDHfoixnkypkC04wQFM9TDbDMHCIpniCHY_moQHKJBiNQVfHl-jE1dJePNUz9H9l893l1-b65urb5cX140VQpZGAumIJaAkBWc3lEHvjLOtVLIHIhm3XIFxGysZAU5bVbfpW2DEEeUA-Dn6dPSd99sJeguhfm3Uc_KTSY86Gq__7QQ_6F086I0UG8G7avD-ySDFH3vIRU8-L5MyAeI-a8aE4lIIxitKjqhNMecE7vkaSvQSp65x6t9x6mOcVfLu7-c9C_7kV4GPRwDqkA4eks7WL7PtfQJbdB_9_91_AdG2tO4</recordid><startdate>20190913</startdate><enddate>20190913</enddate><creator>Bhat, Suraj P.</creator><creator>Gangalum, Rajendra K.</creator><creator>Kim, Dongjae</creator><creator>Mangul, Serghei</creator><creator>Kashyap, Raj K.</creator><creator>Zhou, Xinkai</creator><creator>Elashoff, David</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8746-0266</orcidid><orcidid>https://orcid.org/0000-0002-4911-5656</orcidid></search><sort><creationdate>20190913</creationdate><title>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</title><author>Bhat, Suraj P. ; Gangalum, Rajendra K. ; Kim, Dongjae ; Mangul, Serghei ; Kashyap, Raj K. ; Zhou, Xinkai ; Elashoff, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>cataract</topic><topic>Cataract - genetics</topic><topic>Cataract - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>crystallin</topic><topic>crystallin gene expression</topic><topic>Crystallins - genetics</topic><topic>Crystallins - metabolism</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Female</topic><topic>gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>genetic cataract</topic><topic>Humans</topic><topic>lens</topic><topic>Lens, Crystalline - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Bases of Disease</topic><topic>Retina - embryology</topic><topic>RNA, Messenger - genetics</topic><topic>single cells</topic><topic>Single-Cell Analysis - methods</topic><topic>spatial transcriptomics</topic><topic>transcription</topic><topic>Transcriptome - genetics</topic><topic>vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Suraj P.</creatorcontrib><creatorcontrib>Gangalum, Rajendra K.</creatorcontrib><creatorcontrib>Kim, Dongjae</creatorcontrib><creatorcontrib>Mangul, Serghei</creatorcontrib><creatorcontrib>Kashyap, Raj K.</creatorcontrib><creatorcontrib>Zhou, Xinkai</creatorcontrib><creatorcontrib>Elashoff, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Suraj P.</au><au>Gangalum, Rajendra K.</au><au>Kim, Dongjae</au><au>Mangul, Serghei</au><au>Kashyap, Raj K.</au><au>Zhou, Xinkai</au><au>Elashoff, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-09-13</date><risdate>2019</risdate><volume>294</volume><issue>37</issue><spage>13530</spage><epage>13544</epage><pages>13530-13544</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31243103</pmid><doi>10.1074/jbc.RA119.008853</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8746-0266</orcidid><orcidid>https://orcid.org/0000-0002-4911-5656</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-09, Vol.294 (37), p.13530-13544
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6746439
source ScienceDirect Freedom Collection; PubMed Central
subjects Animals
Animals, Genetically Modified
cataract
Cataract - genetics
Cataract - metabolism
Cell Differentiation - genetics
crystallin
crystallin gene expression
Crystallins - genetics
Crystallins - metabolism
Eye Proteins - genetics
Eye Proteins - metabolism
Female
gene expression
Gene Expression Profiling - methods
genetic cataract
Humans
lens
Lens, Crystalline - metabolism
Male
Mice
Mice, Inbred C57BL
Molecular Bases of Disease
Retina - embryology
RNA, Messenger - genetics
single cells
Single-Cell Analysis - methods
spatial transcriptomics
transcription
Transcriptome - genetics
vision
title Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20of%20single%20fiber%20cells%20in%20a%20transgenic%20paradigm%20of%20an%20inherited%20childhood%20cataract%20reveals%20absence%20of%20molecular%20heterogeneity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bhat,%20Suraj%20P.&rft.date=2019-09-13&rft.volume=294&rft.issue=37&rft.spage=13530&rft.epage=13544&rft.pages=13530-13544&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.008853&rft_dat=%3Cproquest_pubme%3E2248374423%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248374423&rft_id=info:pmid/31243103&rfr_iscdi=true