Loading…
Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity
Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differe...
Saved in:
Published in: | The Journal of biological chemistry 2019-09, Vol.294 (37), p.13530-13544 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3 |
container_end_page | 13544 |
container_issue | 37 |
container_start_page | 13530 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Bhat, Suraj P. Gangalum, Rajendra K. Kim, Dongjae Mangul, Serghei Kashyap, Raj K. Zhou, Xinkai Elashoff, David |
description | Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease. |
doi_str_mv | 10.1074/jbc.RA119.008853 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6746439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820331902</els_id><sourcerecordid>2248374423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYNY7Lb67pPk0ZdZ8282GR-EUrQKhUJpwbeQzdzspMwkY5Jd6Bfx85pxa9EHQ-AG7u-cJPcg9JaSNSVSfHjY2vXtBaXdmhClWv4CrShRvOEt_f4SrQhhtOlYq07RWc4PpC7R0VfolFMmOCV8hX7eJROyTX4uPgYz4jlF50cfdjg6nGsdATu_hYQtjGPGPmCDyyLaQfAWzyaZ3u-mBTehtgdIvkCP7eDHfoixnkypkC04wQFM9TDbDMHCIpniCHY_moQHKJBiNQVfHl-jE1dJePNUz9H9l893l1-b65urb5cX140VQpZGAumIJaAkBWc3lEHvjLOtVLIHIhm3XIFxGysZAU5bVbfpW2DEEeUA-Dn6dPSd99sJeguhfm3Uc_KTSY86Gq__7QQ_6F086I0UG8G7avD-ySDFH3vIRU8-L5MyAeI-a8aE4lIIxitKjqhNMecE7vkaSvQSp65x6t9x6mOcVfLu7-c9C_7kV4GPRwDqkA4eks7WL7PtfQJbdB_9_91_AdG2tO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248374423</pqid></control><display><type>article</type><title>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</title><source>ScienceDirect Freedom Collection</source><source>PubMed Central</source><creator>Bhat, Suraj P. ; Gangalum, Rajendra K. ; Kim, Dongjae ; Mangul, Serghei ; Kashyap, Raj K. ; Zhou, Xinkai ; Elashoff, David</creator><creatorcontrib>Bhat, Suraj P. ; Gangalum, Rajendra K. ; Kim, Dongjae ; Mangul, Serghei ; Kashyap, Raj K. ; Zhou, Xinkai ; Elashoff, David</creatorcontrib><description>Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.008853</identifier><identifier>PMID: 31243103</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; cataract ; Cataract - genetics ; Cataract - metabolism ; Cell Differentiation - genetics ; crystallin ; crystallin gene expression ; Crystallins - genetics ; Crystallins - metabolism ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Female ; gene expression ; Gene Expression Profiling - methods ; genetic cataract ; Humans ; lens ; Lens, Crystalline - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Bases of Disease ; Retina - embryology ; RNA, Messenger - genetics ; single cells ; Single-Cell Analysis - methods ; spatial transcriptomics ; transcription ; Transcriptome - genetics ; vision</subject><ispartof>The Journal of biological chemistry, 2019-09, Vol.294 (37), p.13530-13544</ispartof><rights>2019 © 2019 Bhat et al.</rights><rights>2019 Bhat et al.</rights><rights>2019 Bhat et al. 2019 Bhat et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</citedby><cites>FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</cites><orcidid>0000-0002-8746-0266 ; 0000-0002-4911-5656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746439/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820331902$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31243103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhat, Suraj P.</creatorcontrib><creatorcontrib>Gangalum, Rajendra K.</creatorcontrib><creatorcontrib>Kim, Dongjae</creatorcontrib><creatorcontrib>Mangul, Serghei</creatorcontrib><creatorcontrib>Kashyap, Raj K.</creatorcontrib><creatorcontrib>Zhou, Xinkai</creatorcontrib><creatorcontrib>Elashoff, David</creatorcontrib><title>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>cataract</subject><subject>Cataract - genetics</subject><subject>Cataract - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>crystallin</subject><subject>crystallin gene expression</subject><subject>Crystallins - genetics</subject><subject>Crystallins - metabolism</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Female</subject><subject>gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>genetic cataract</subject><subject>Humans</subject><subject>lens</subject><subject>Lens, Crystalline - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Bases of Disease</subject><subject>Retina - embryology</subject><subject>RNA, Messenger - genetics</subject><subject>single cells</subject><subject>Single-Cell Analysis - methods</subject><subject>spatial transcriptomics</subject><subject>transcription</subject><subject>Transcriptome - genetics</subject><subject>vision</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kV9rFDEUxYNY7Lb67pPk0ZdZ8282GR-EUrQKhUJpwbeQzdzspMwkY5Jd6Bfx85pxa9EHQ-AG7u-cJPcg9JaSNSVSfHjY2vXtBaXdmhClWv4CrShRvOEt_f4SrQhhtOlYq07RWc4PpC7R0VfolFMmOCV8hX7eJROyTX4uPgYz4jlF50cfdjg6nGsdATu_hYQtjGPGPmCDyyLaQfAWzyaZ3u-mBTehtgdIvkCP7eDHfoixnkypkC04wQFM9TDbDMHCIpniCHY_moQHKJBiNQVfHl-jE1dJePNUz9H9l893l1-b65urb5cX140VQpZGAumIJaAkBWc3lEHvjLOtVLIHIhm3XIFxGysZAU5bVbfpW2DEEeUA-Dn6dPSd99sJeguhfm3Uc_KTSY86Gq__7QQ_6F086I0UG8G7avD-ySDFH3vIRU8-L5MyAeI-a8aE4lIIxitKjqhNMecE7vkaSvQSp65x6t9x6mOcVfLu7-c9C_7kV4GPRwDqkA4eks7WL7PtfQJbdB_9_91_AdG2tO4</recordid><startdate>20190913</startdate><enddate>20190913</enddate><creator>Bhat, Suraj P.</creator><creator>Gangalum, Rajendra K.</creator><creator>Kim, Dongjae</creator><creator>Mangul, Serghei</creator><creator>Kashyap, Raj K.</creator><creator>Zhou, Xinkai</creator><creator>Elashoff, David</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8746-0266</orcidid><orcidid>https://orcid.org/0000-0002-4911-5656</orcidid></search><sort><creationdate>20190913</creationdate><title>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</title><author>Bhat, Suraj P. ; Gangalum, Rajendra K. ; Kim, Dongjae ; Mangul, Serghei ; Kashyap, Raj K. ; Zhou, Xinkai ; Elashoff, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>cataract</topic><topic>Cataract - genetics</topic><topic>Cataract - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>crystallin</topic><topic>crystallin gene expression</topic><topic>Crystallins - genetics</topic><topic>Crystallins - metabolism</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Female</topic><topic>gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>genetic cataract</topic><topic>Humans</topic><topic>lens</topic><topic>Lens, Crystalline - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Bases of Disease</topic><topic>Retina - embryology</topic><topic>RNA, Messenger - genetics</topic><topic>single cells</topic><topic>Single-Cell Analysis - methods</topic><topic>spatial transcriptomics</topic><topic>transcription</topic><topic>Transcriptome - genetics</topic><topic>vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Suraj P.</creatorcontrib><creatorcontrib>Gangalum, Rajendra K.</creatorcontrib><creatorcontrib>Kim, Dongjae</creatorcontrib><creatorcontrib>Mangul, Serghei</creatorcontrib><creatorcontrib>Kashyap, Raj K.</creatorcontrib><creatorcontrib>Zhou, Xinkai</creatorcontrib><creatorcontrib>Elashoff, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Suraj P.</au><au>Gangalum, Rajendra K.</au><au>Kim, Dongjae</au><au>Mangul, Serghei</au><au>Kashyap, Raj K.</au><au>Zhou, Xinkai</au><au>Elashoff, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-09-13</date><risdate>2019</risdate><volume>294</volume><issue>37</issue><spage>13530</spage><epage>13544</epage><pages>13530-13544</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31243103</pmid><doi>10.1074/jbc.RA119.008853</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8746-0266</orcidid><orcidid>https://orcid.org/0000-0002-4911-5656</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-09, Vol.294 (37), p.13530-13544 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6746439 |
source | ScienceDirect Freedom Collection; PubMed Central |
subjects | Animals Animals, Genetically Modified cataract Cataract - genetics Cataract - metabolism Cell Differentiation - genetics crystallin crystallin gene expression Crystallins - genetics Crystallins - metabolism Eye Proteins - genetics Eye Proteins - metabolism Female gene expression Gene Expression Profiling - methods genetic cataract Humans lens Lens, Crystalline - metabolism Male Mice Mice, Inbred C57BL Molecular Bases of Disease Retina - embryology RNA, Messenger - genetics single cells Single-Cell Analysis - methods spatial transcriptomics transcription Transcriptome - genetics vision |
title | Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20of%20single%20fiber%20cells%20in%20a%20transgenic%20paradigm%20of%20an%20inherited%20childhood%20cataract%20reveals%20absence%20of%20molecular%20heterogeneity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bhat,%20Suraj%20P.&rft.date=2019-09-13&rft.volume=294&rft.issue=37&rft.spage=13530&rft.epage=13544&rft.pages=13530-13544&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.008853&rft_dat=%3Cproquest_pubme%3E2248374423%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-7e090c0e871efc612edfafc5787de0723c38eaf6c720e3158158ad5e20f08fee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248374423&rft_id=info:pmid/31243103&rfr_iscdi=true |