Loading…
Orientation-Independent Yield Stress and Activation Volume of Dislocation Nucleation in LiTaO3 Single Crystal by Nanoindentation
Relying on nanoindentation technology, we investigated the elastic-to-plastic transition via first pop-in event and estimated the corresponding shear stress for incipient plasticity, i.e., yielding in the three typical orientations, i.e., X-112°, Y-36°, and Y-42° planes. The occurrence of incipient...
Saved in:
Published in: | Materials 2019-08, Vol.12 (17), p.2799 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Relying on nanoindentation technology, we investigated the elastic-to-plastic transition via first pop-in event and estimated the corresponding shear stress for incipient plasticity, i.e., yielding in the three typical orientations, i.e., X-112°, Y-36°, and Y-42° planes. The occurrence of incipient plasticity exhibited a stochastic distribution in a wide range for the three orientations. Accordingly, the obtained values of yield stress were uniform and scattered in the range from about 4 to 7 GPa for LiTaO3 single crystal. The orientation effect on yield stress at the nano-scale was revealed to be insignificant in LiTaO3 single crystal. The yield stresses were 5.44 ± 0.41, 5.74 ± 0.59, and 5.34 ± 0.525 GPa for the X-112°, Y-36°, and Y-42° planes, respectively. The activation volumes of dislocation nucleation were computed based on the cumulative distribution of yield stress, which were 12 Å3, 8 Å3, and 9 Å3 for the X-112°, Y-36°, and Y-42° planes. The results indicated that point-like defects could be the source of plastic initiation on the surface of LiTaO3 single crystal. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma12172799 |