Loading…

Intrahepatic Delivery of Pegylated Catalase Is Protective in a Rat Ischemia/Reperfusion Injury Model

Ischemia/reperfusion injury (IRI) can occur during liver surgery. Endogenous catalase is important to cellular antioxidant defenses and is critical to IRI prevention. Pegylation of catalase (PEG-CAT) improves its therapeutic potential by extending plasma half-life, but systemic administration of exo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of surgical research 2019-06, Vol.238, p.152-163
Main Authors: Akateh, Clifford, Beal, Eliza W., Kim, Jung-Lye, Reader, Brenda F., Maynard, Katelyn, Zweier, Jay L., Whitson, Bryan A., Black, Sylvester M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ischemia/reperfusion injury (IRI) can occur during liver surgery. Endogenous catalase is important to cellular antioxidant defenses and is critical to IRI prevention. Pegylation of catalase (PEG-CAT) improves its therapeutic potential by extending plasma half-life, but systemic administration of exogenous PEG-CAT has been only mildly therapeutic for hepatic IRI. Here, we investigated the protective effects of direct intrahepatic delivery of PEG-CAT during IRI using a rat hilar clamp model. PEG-CAT was tested in vitro and in vivo. In vitro, enriched rat liver cell populations were subjected to oxidative stress injury (H2O2), and measures of cell health and viability were assessed. In vivo, rats underwent segmental (70%) hepatic warm ischemia for 1 h, followed by 6 h of reperfusion, and plasma alanine aminotransferase and aspartate aminotransferase, tissue malondialdehyde, adenosine triphosphate, and GSH, and histology were assessed. In vitro, PEG-CAT pretreatment of liver cells showed substantial uptake and protection against oxidative stress injury. In vivo, direct intrahepatic, but not systemic, delivery of PEG-CAT during IRI significantly reduced alanine aminotransferase and aspartate aminotransferase in a time-dependent manner (P 
ISSN:0022-4804
1095-8673
DOI:10.1016/j.jss.2019.01.028