Loading…

Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling

The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-me...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-09, Vol.9 (1), p.13591-13, Article 13591
Main Authors: Kiyan, Yulia, Tkachuk, Sergey, Kurselis, Kestutis, Shushakova, Nelli, Stahl, Klaus, Dawodu, Damilola, Kiyan, Roman, Chichkov, Boris, Haller, Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3
cites cdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3
container_end_page 13
container_issue 1
container_start_page 13591
container_title Scientific reports
container_volume 9
creator Kiyan, Yulia
Tkachuk, Sergey
Kurselis, Kestutis
Shushakova, Nelli
Stahl, Klaus
Dawodu, Damilola
Kiyan, Roman
Chichkov, Boris
Haller, Hermann
description The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts. In vivo , expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.
doi_str_mv 10.1038/s41598-019-50068-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6753096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2293849137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaLYUvsHPMiC52g-d5OLIEWtUFC0greQ7GbblO1uTbZC_72pW6teOpeZYd68mccD4ByjK4youA4McykgwhJyhFIB-RHoE8Q4JJSQ4z91DwxDWKAYnEiG5SnoUcxpJjLeB-9ju9Je1zpYSJKVb1qbtyEpfbNMJs-vcGkLp1tbJLYumnZuK6erxNWLtd8kZhOruTOudfUsmU5eWBLcrNZVFfszcFLqKtjhLg_A2_3ddDSGk6eHx9HtBOYckRZmVKa0ZLQwBRM6L7C2mSaclphaVEgpeLbViUqDLRYYccOJMaagLDUIEUMH4KbjXa1NfDa3det1pVbeLbXfqEY79X9Su7maNZ8qzThF8fgAXO4IfPOxtqFVi2bto4qgCGdpJqhk8iCKSCqYxDSLKNKhct-E4G25_wMjtbVNdbapaJv6tk3xuHTxV8F-5cekCKAdIMRRPbP-9_YB2i_sb6KM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293849137</pqid></control><display><type>article</type><title>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kiyan, Yulia ; Tkachuk, Sergey ; Kurselis, Kestutis ; Shushakova, Nelli ; Stahl, Klaus ; Dawodu, Damilola ; Kiyan, Roman ; Chichkov, Boris ; Haller, Hermann</creator><creatorcontrib>Kiyan, Yulia ; Tkachuk, Sergey ; Kurselis, Kestutis ; Shushakova, Nelli ; Stahl, Klaus ; Dawodu, Damilola ; Kiyan, Roman ; Chichkov, Boris ; Haller, Hermann</creatorcontrib><description>The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts. In vivo , expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-50068-5</identifier><identifier>PMID: 31537875</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/221 ; 631/80/86 ; Animals ; Capillaries ; CD14 antigen ; Cell activation ; Disease Models, Animal ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Glucuronidase - blood ; Glucuronidase - genetics ; Glucuronidase - metabolism ; Glycocalyx - metabolism ; Heparan sulfate ; Heparitin Sulfate - metabolism ; Humanities and Social Sciences ; Humans ; Inflammation ; Interleukin 6 ; Intravenous administration ; Kidneys ; Lipopolysaccharides ; Lipopolysaccharides - adverse effects ; Male ; Mice ; Microfluidic Analytical Techniques ; Microfluidics ; Microvasculature ; multidisciplinary ; Science ; Sepsis ; Sepsis - chemically induced ; Sepsis - metabolism ; Signal Transduction ; Sulfates ; TLR4 protein ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors ; Tumor necrosis factor-α</subject><ispartof>Scientific reports, 2019-09, Vol.9 (1), p.13591-13, Article 13591</ispartof><rights>The Author(s) 2019. corrected publication 2021</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</citedby><cites>FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2546783949/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2546783949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31537875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiyan, Yulia</creatorcontrib><creatorcontrib>Tkachuk, Sergey</creatorcontrib><creatorcontrib>Kurselis, Kestutis</creatorcontrib><creatorcontrib>Shushakova, Nelli</creatorcontrib><creatorcontrib>Stahl, Klaus</creatorcontrib><creatorcontrib>Dawodu, Damilola</creatorcontrib><creatorcontrib>Kiyan, Roman</creatorcontrib><creatorcontrib>Chichkov, Boris</creatorcontrib><creatorcontrib>Haller, Hermann</creatorcontrib><title>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts. In vivo , expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.</description><subject>631/45/221</subject><subject>631/80/86</subject><subject>Animals</subject><subject>Capillaries</subject><subject>CD14 antigen</subject><subject>Cell activation</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Glucuronidase - blood</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>Glycocalyx - metabolism</subject><subject>Heparan sulfate</subject><subject>Heparitin Sulfate - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Intravenous administration</subject><subject>Kidneys</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - adverse effects</subject><subject>Male</subject><subject>Mice</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Microvasculature</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Sepsis</subject><subject>Sepsis - chemically induced</subject><subject>Sepsis - metabolism</subject><subject>Signal Transduction</subject><subject>Sulfates</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><subject>Tumor necrosis factor-α</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1LAzEQDaLYUvsHPMiC52g-d5OLIEWtUFC0greQ7GbblO1uTbZC_72pW6teOpeZYd68mccD4ByjK4youA4McykgwhJyhFIB-RHoE8Q4JJSQ4z91DwxDWKAYnEiG5SnoUcxpJjLeB-9ju9Je1zpYSJKVb1qbtyEpfbNMJs-vcGkLp1tbJLYumnZuK6erxNWLtd8kZhOruTOudfUsmU5eWBLcrNZVFfszcFLqKtjhLg_A2_3ddDSGk6eHx9HtBOYckRZmVKa0ZLQwBRM6L7C2mSaclphaVEgpeLbViUqDLRYYccOJMaagLDUIEUMH4KbjXa1NfDa3det1pVbeLbXfqEY79X9Su7maNZ8qzThF8fgAXO4IfPOxtqFVi2bto4qgCGdpJqhk8iCKSCqYxDSLKNKhct-E4G25_wMjtbVNdbapaJv6tk3xuHTxV8F-5cekCKAdIMRRPbP-9_YB2i_sb6KM</recordid><startdate>20190919</startdate><enddate>20190919</enddate><creator>Kiyan, Yulia</creator><creator>Tkachuk, Sergey</creator><creator>Kurselis, Kestutis</creator><creator>Shushakova, Nelli</creator><creator>Stahl, Klaus</creator><creator>Dawodu, Damilola</creator><creator>Kiyan, Roman</creator><creator>Chichkov, Boris</creator><creator>Haller, Hermann</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20190919</creationdate><title>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</title><author>Kiyan, Yulia ; Tkachuk, Sergey ; Kurselis, Kestutis ; Shushakova, Nelli ; Stahl, Klaus ; Dawodu, Damilola ; Kiyan, Roman ; Chichkov, Boris ; Haller, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/221</topic><topic>631/80/86</topic><topic>Animals</topic><topic>Capillaries</topic><topic>CD14 antigen</topic><topic>Cell activation</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Glucuronidase - blood</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>Glycocalyx - metabolism</topic><topic>Heparan sulfate</topic><topic>Heparitin Sulfate - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Intravenous administration</topic><topic>Kidneys</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - adverse effects</topic><topic>Male</topic><topic>Mice</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Microvasculature</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Sepsis</topic><topic>Sepsis - chemically induced</topic><topic>Sepsis - metabolism</topic><topic>Signal Transduction</topic><topic>Sulfates</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiyan, Yulia</creatorcontrib><creatorcontrib>Tkachuk, Sergey</creatorcontrib><creatorcontrib>Kurselis, Kestutis</creatorcontrib><creatorcontrib>Shushakova, Nelli</creatorcontrib><creatorcontrib>Stahl, Klaus</creatorcontrib><creatorcontrib>Dawodu, Damilola</creatorcontrib><creatorcontrib>Kiyan, Roman</creatorcontrib><creatorcontrib>Chichkov, Boris</creatorcontrib><creatorcontrib>Haller, Hermann</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiyan, Yulia</au><au>Tkachuk, Sergey</au><au>Kurselis, Kestutis</au><au>Shushakova, Nelli</au><au>Stahl, Klaus</au><au>Dawodu, Damilola</au><au>Kiyan, Roman</au><au>Chichkov, Boris</au><au>Haller, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-09-19</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>13591</spage><epage>13</epage><pages>13591-13</pages><artnum>13591</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts. In vivo , expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31537875</pmid><doi>10.1038/s41598-019-50068-5</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-09, Vol.9 (1), p.13591-13, Article 13591
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6753096
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/221
631/80/86
Animals
Capillaries
CD14 antigen
Cell activation
Disease Models, Animal
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - metabolism
Glucuronidase - blood
Glucuronidase - genetics
Glucuronidase - metabolism
Glycocalyx - metabolism
Heparan sulfate
Heparitin Sulfate - metabolism
Humanities and Social Sciences
Humans
Inflammation
Interleukin 6
Intravenous administration
Kidneys
Lipopolysaccharides
Lipopolysaccharides - adverse effects
Male
Mice
Microfluidic Analytical Techniques
Microfluidics
Microvasculature
multidisciplinary
Science
Sepsis
Sepsis - chemically induced
Sepsis - metabolism
Signal Transduction
Sulfates
TLR4 protein
Toll-Like Receptor 4 - metabolism
Toll-like receptors
Tumor necrosis factor-α
title Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heparanase-2%20protects%20from%20LPS-mediated%20endothelial%20injury%20by%20inhibiting%20TLR4%20signalling&rft.jtitle=Scientific%20reports&rft.au=Kiyan,%20Yulia&rft.date=2019-09-19&rft.volume=9&rft.issue=1&rft.spage=13591&rft.epage=13&rft.pages=13591-13&rft.artnum=13591&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-50068-5&rft_dat=%3Cproquest_pubme%3E2293849137%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2293849137&rft_id=info:pmid/31537875&rfr_iscdi=true