Loading…
Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling
The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-me...
Saved in:
Published in: | Scientific reports 2019-09, Vol.9 (1), p.13591-13, Article 13591 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 13591 |
container_title | Scientific reports |
container_volume | 9 |
creator | Kiyan, Yulia Tkachuk, Sergey Kurselis, Kestutis Shushakova, Nelli Stahl, Klaus Dawodu, Damilola Kiyan, Roman Chichkov, Boris Haller, Hermann |
description | The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts.
In vivo
, expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease. |
doi_str_mv | 10.1038/s41598-019-50068-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6753096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2293849137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaLYUvsHPMiC52g-d5OLIEWtUFC0greQ7GbblO1uTbZC_72pW6teOpeZYd68mccD4ByjK4youA4McykgwhJyhFIB-RHoE8Q4JJSQ4z91DwxDWKAYnEiG5SnoUcxpJjLeB-9ju9Je1zpYSJKVb1qbtyEpfbNMJs-vcGkLp1tbJLYumnZuK6erxNWLtd8kZhOruTOudfUsmU5eWBLcrNZVFfszcFLqKtjhLg_A2_3ddDSGk6eHx9HtBOYckRZmVKa0ZLQwBRM6L7C2mSaclphaVEgpeLbViUqDLRYYccOJMaagLDUIEUMH4KbjXa1NfDa3det1pVbeLbXfqEY79X9Su7maNZ8qzThF8fgAXO4IfPOxtqFVi2bto4qgCGdpJqhk8iCKSCqYxDSLKNKhct-E4G25_wMjtbVNdbapaJv6tk3xuHTxV8F-5cekCKAdIMRRPbP-9_YB2i_sb6KM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293849137</pqid></control><display><type>article</type><title>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kiyan, Yulia ; Tkachuk, Sergey ; Kurselis, Kestutis ; Shushakova, Nelli ; Stahl, Klaus ; Dawodu, Damilola ; Kiyan, Roman ; Chichkov, Boris ; Haller, Hermann</creator><creatorcontrib>Kiyan, Yulia ; Tkachuk, Sergey ; Kurselis, Kestutis ; Shushakova, Nelli ; Stahl, Klaus ; Dawodu, Damilola ; Kiyan, Roman ; Chichkov, Boris ; Haller, Hermann</creatorcontrib><description>The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts.
In vivo
, expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-50068-5</identifier><identifier>PMID: 31537875</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/221 ; 631/80/86 ; Animals ; Capillaries ; CD14 antigen ; Cell activation ; Disease Models, Animal ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Glucuronidase - blood ; Glucuronidase - genetics ; Glucuronidase - metabolism ; Glycocalyx - metabolism ; Heparan sulfate ; Heparitin Sulfate - metabolism ; Humanities and Social Sciences ; Humans ; Inflammation ; Interleukin 6 ; Intravenous administration ; Kidneys ; Lipopolysaccharides ; Lipopolysaccharides - adverse effects ; Male ; Mice ; Microfluidic Analytical Techniques ; Microfluidics ; Microvasculature ; multidisciplinary ; Science ; Sepsis ; Sepsis - chemically induced ; Sepsis - metabolism ; Signal Transduction ; Sulfates ; TLR4 protein ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors ; Tumor necrosis factor-α</subject><ispartof>Scientific reports, 2019-09, Vol.9 (1), p.13591-13, Article 13591</ispartof><rights>The Author(s) 2019. corrected publication 2021</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</citedby><cites>FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2546783949/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2546783949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31537875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiyan, Yulia</creatorcontrib><creatorcontrib>Tkachuk, Sergey</creatorcontrib><creatorcontrib>Kurselis, Kestutis</creatorcontrib><creatorcontrib>Shushakova, Nelli</creatorcontrib><creatorcontrib>Stahl, Klaus</creatorcontrib><creatorcontrib>Dawodu, Damilola</creatorcontrib><creatorcontrib>Kiyan, Roman</creatorcontrib><creatorcontrib>Chichkov, Boris</creatorcontrib><creatorcontrib>Haller, Hermann</creatorcontrib><title>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts.
In vivo
, expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.</description><subject>631/45/221</subject><subject>631/80/86</subject><subject>Animals</subject><subject>Capillaries</subject><subject>CD14 antigen</subject><subject>Cell activation</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Glucuronidase - blood</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>Glycocalyx - metabolism</subject><subject>Heparan sulfate</subject><subject>Heparitin Sulfate - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Intravenous administration</subject><subject>Kidneys</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - adverse effects</subject><subject>Male</subject><subject>Mice</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Microvasculature</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Sepsis</subject><subject>Sepsis - chemically induced</subject><subject>Sepsis - metabolism</subject><subject>Signal Transduction</subject><subject>Sulfates</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><subject>Tumor necrosis factor-α</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1LAzEQDaLYUvsHPMiC52g-d5OLIEWtUFC0greQ7GbblO1uTbZC_72pW6teOpeZYd68mccD4ByjK4youA4McykgwhJyhFIB-RHoE8Q4JJSQ4z91DwxDWKAYnEiG5SnoUcxpJjLeB-9ju9Je1zpYSJKVb1qbtyEpfbNMJs-vcGkLp1tbJLYumnZuK6erxNWLtd8kZhOruTOudfUsmU5eWBLcrNZVFfszcFLqKtjhLg_A2_3ddDSGk6eHx9HtBOYckRZmVKa0ZLQwBRM6L7C2mSaclphaVEgpeLbViUqDLRYYccOJMaagLDUIEUMH4KbjXa1NfDa3det1pVbeLbXfqEY79X9Su7maNZ8qzThF8fgAXO4IfPOxtqFVi2bto4qgCGdpJqhk8iCKSCqYxDSLKNKhct-E4G25_wMjtbVNdbapaJv6tk3xuHTxV8F-5cekCKAdIMRRPbP-9_YB2i_sb6KM</recordid><startdate>20190919</startdate><enddate>20190919</enddate><creator>Kiyan, Yulia</creator><creator>Tkachuk, Sergey</creator><creator>Kurselis, Kestutis</creator><creator>Shushakova, Nelli</creator><creator>Stahl, Klaus</creator><creator>Dawodu, Damilola</creator><creator>Kiyan, Roman</creator><creator>Chichkov, Boris</creator><creator>Haller, Hermann</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20190919</creationdate><title>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</title><author>Kiyan, Yulia ; Tkachuk, Sergey ; Kurselis, Kestutis ; Shushakova, Nelli ; Stahl, Klaus ; Dawodu, Damilola ; Kiyan, Roman ; Chichkov, Boris ; Haller, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/221</topic><topic>631/80/86</topic><topic>Animals</topic><topic>Capillaries</topic><topic>CD14 antigen</topic><topic>Cell activation</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Glucuronidase - blood</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>Glycocalyx - metabolism</topic><topic>Heparan sulfate</topic><topic>Heparitin Sulfate - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Intravenous administration</topic><topic>Kidneys</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - adverse effects</topic><topic>Male</topic><topic>Mice</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Microvasculature</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Sepsis</topic><topic>Sepsis - chemically induced</topic><topic>Sepsis - metabolism</topic><topic>Signal Transduction</topic><topic>Sulfates</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiyan, Yulia</creatorcontrib><creatorcontrib>Tkachuk, Sergey</creatorcontrib><creatorcontrib>Kurselis, Kestutis</creatorcontrib><creatorcontrib>Shushakova, Nelli</creatorcontrib><creatorcontrib>Stahl, Klaus</creatorcontrib><creatorcontrib>Dawodu, Damilola</creatorcontrib><creatorcontrib>Kiyan, Roman</creatorcontrib><creatorcontrib>Chichkov, Boris</creatorcontrib><creatorcontrib>Haller, Hermann</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiyan, Yulia</au><au>Tkachuk, Sergey</au><au>Kurselis, Kestutis</au><au>Shushakova, Nelli</au><au>Stahl, Klaus</au><au>Dawodu, Damilola</au><au>Kiyan, Roman</au><au>Chichkov, Boris</au><au>Haller, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-09-19</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>13591</spage><epage>13</epage><pages>13591-13</pages><artnum>13591</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts.
In vivo
, expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31537875</pmid><doi>10.1038/s41598-019-50068-5</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-09, Vol.9 (1), p.13591-13, Article 13591 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6753096 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/45/221 631/80/86 Animals Capillaries CD14 antigen Cell activation Disease Models, Animal Endothelial cells Endothelial Cells - cytology Endothelial Cells - metabolism Glucuronidase - blood Glucuronidase - genetics Glucuronidase - metabolism Glycocalyx - metabolism Heparan sulfate Heparitin Sulfate - metabolism Humanities and Social Sciences Humans Inflammation Interleukin 6 Intravenous administration Kidneys Lipopolysaccharides Lipopolysaccharides - adverse effects Male Mice Microfluidic Analytical Techniques Microfluidics Microvasculature multidisciplinary Science Sepsis Sepsis - chemically induced Sepsis - metabolism Signal Transduction Sulfates TLR4 protein Toll-Like Receptor 4 - metabolism Toll-like receptors Tumor necrosis factor-α |
title | Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heparanase-2%20protects%20from%20LPS-mediated%20endothelial%20injury%20by%20inhibiting%20TLR4%20signalling&rft.jtitle=Scientific%20reports&rft.au=Kiyan,%20Yulia&rft.date=2019-09-19&rft.volume=9&rft.issue=1&rft.spage=13591&rft.epage=13&rft.pages=13591-13&rft.artnum=13591&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-50068-5&rft_dat=%3Cproquest_pubme%3E2293849137%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-73963f43dbd48acd1ae7a253f13e0d9985715980fb1e18105b52bbbd346b002b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2293849137&rft_id=info:pmid/31537875&rfr_iscdi=true |