Loading…
Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population
Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2019-09, Vol.116 (38), p.19145-19154 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83 |
container_end_page | 19154 |
container_issue | 38 |
container_start_page | 19145 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | George, Shilpa Elizabeth Hrubesch, Jennifer Breuing, Inga Vetter, Naisa Korn, Natalya Hennemann, Katja Bleul, Lisa Willmann, Matthias Ebner, Patrick Götz, Friedrich Wolz, Christiane |
description | Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression. |
doi_str_mv | 10.1073/pnas.1902752116 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26851678</jstor_id><sourcerecordid>26851678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EokvhzAkUiQuXtB6_4lyQUMVLqtRDy9nyOs6uV4md-lHR_x5vtyyU02i--c2nGX0IvQV8Brij54vX6Qx6TDpOAMQztALcQytYj5-jFa56KxlhJ-hVSjuMcc8lfolOKDApOyxXaHP1yw06uzvbpBxtSs0Qa5OavK2KnazJLvgmjM1tCbHMVfPJ-U0zl6x9To3zD-h11sv2fgomGFNSo0u0tSxhKZPeO7xGL0Y9JfvmsZ6in1-_3Fx8by-vvv24-HzZGsZobmWPMQDptcEwAgYNXI5MEKrJSNYc7GgGS0DYTg6EWk4w0XbQtBNmLca1pKfo08F3KevZDsb6HPWkluhmHe9V0E49nXi3VZtwp0THGWddNfj4aBDDbbEpq9klY6dJextKUoRI0QNmklf0w3_oLpTo63uV6lk1k7Sv1PmBMjGkFO14PAaw2oeo9iGqvyHWjff__nDk_6RWgXcHYJdyiMc5EZKD6CT9DbBxpN8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473839</pqid></control><display><type>article</type><title>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>George, Shilpa Elizabeth ; Hrubesch, Jennifer ; Breuing, Inga ; Vetter, Naisa ; Korn, Natalya ; Hennemann, Katja ; Bleul, Lisa ; Willmann, Matthias ; Ebner, Patrick ; Götz, Friedrich ; Wolz, Christiane</creator><creatorcontrib>George, Shilpa Elizabeth ; Hrubesch, Jennifer ; Breuing, Inga ; Vetter, Naisa ; Korn, Natalya ; Hennemann, Katja ; Bleul, Lisa ; Willmann, Matthias ; Ebner, Patrick ; Götz, Friedrich ; Wolz, Christiane</creatorcontrib><description>Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902752116</identifier><identifier>PMID: 31488708</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aerobic conditions ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - pharmacology ; Biological Sciences ; Ciprofloxacin ; Detection ; Evolution, Molecular ; Gene Expression Regulation, Bacterial ; Hypoxia ; Mutants ; Mutation ; Oxidative Stress ; Oxygen ; Pathogens ; Peptides ; Phenols ; Phenotypes ; Physical fitness ; PNAS Plus ; Population ; Quorum Sensing ; Reactive oxygen species ; Reproductive fitness ; Secretion ; Social behavior ; Social factors ; Social interactions ; Staphylococcal Infections - genetics ; Staphylococcal Infections - metabolism ; Staphylococcal Infections - microbiology ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - genetics ; Staphylococcus aureus - pathogenicity ; Toxins ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Virulence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19145-19154</ispartof><rights>Copyright National Academy of Sciences Sep 17, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</citedby><cites>FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</cites><orcidid>0000-0003-0095-4640 ; 0000-0003-3909-5281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26851678$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26851678$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31488708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Shilpa Elizabeth</creatorcontrib><creatorcontrib>Hrubesch, Jennifer</creatorcontrib><creatorcontrib>Breuing, Inga</creatorcontrib><creatorcontrib>Vetter, Naisa</creatorcontrib><creatorcontrib>Korn, Natalya</creatorcontrib><creatorcontrib>Hennemann, Katja</creatorcontrib><creatorcontrib>Bleul, Lisa</creatorcontrib><creatorcontrib>Willmann, Matthias</creatorcontrib><creatorcontrib>Ebner, Patrick</creatorcontrib><creatorcontrib>Götz, Friedrich</creatorcontrib><creatorcontrib>Wolz, Christiane</creatorcontrib><title>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.</description><subject>Aerobic conditions</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - pharmacology</subject><subject>Biological Sciences</subject><subject>Ciprofloxacin</subject><subject>Detection</subject><subject>Evolution, Molecular</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hypoxia</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oxidative Stress</subject><subject>Oxygen</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Phenols</subject><subject>Phenotypes</subject><subject>Physical fitness</subject><subject>PNAS Plus</subject><subject>Population</subject><subject>Quorum Sensing</subject><subject>Reactive oxygen species</subject><subject>Reproductive fitness</subject><subject>Secretion</subject><subject>Social behavior</subject><subject>Social factors</subject><subject>Social interactions</subject><subject>Staphylococcal Infections - genetics</subject><subject>Staphylococcal Infections - metabolism</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - pathogenicity</subject><subject>Toxins</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Virulence</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkctv1DAQxi0EokvhzAkUiQuXtB6_4lyQUMVLqtRDy9nyOs6uV4md-lHR_x5vtyyU02i--c2nGX0IvQV8Brij54vX6Qx6TDpOAMQztALcQytYj5-jFa56KxlhJ-hVSjuMcc8lfolOKDApOyxXaHP1yw06uzvbpBxtSs0Qa5OavK2KnazJLvgmjM1tCbHMVfPJ-U0zl6x9To3zD-h11sv2fgomGFNSo0u0tSxhKZPeO7xGL0Y9JfvmsZ6in1-_3Fx8by-vvv24-HzZGsZobmWPMQDptcEwAgYNXI5MEKrJSNYc7GgGS0DYTg6EWk4w0XbQtBNmLca1pKfo08F3KevZDsb6HPWkluhmHe9V0E49nXi3VZtwp0THGWddNfj4aBDDbbEpq9klY6dJextKUoRI0QNmklf0w3_oLpTo63uV6lk1k7Sv1PmBMjGkFO14PAaw2oeo9iGqvyHWjff__nDk_6RWgXcHYJdyiMc5EZKD6CT9DbBxpN8</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>George, Shilpa Elizabeth</creator><creator>Hrubesch, Jennifer</creator><creator>Breuing, Inga</creator><creator>Vetter, Naisa</creator><creator>Korn, Natalya</creator><creator>Hennemann, Katja</creator><creator>Bleul, Lisa</creator><creator>Willmann, Matthias</creator><creator>Ebner, Patrick</creator><creator>Götz, Friedrich</creator><creator>Wolz, Christiane</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0095-4640</orcidid><orcidid>https://orcid.org/0000-0003-3909-5281</orcidid></search><sort><creationdate>20190917</creationdate><title>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</title><author>George, Shilpa Elizabeth ; Hrubesch, Jennifer ; Breuing, Inga ; Vetter, Naisa ; Korn, Natalya ; Hennemann, Katja ; Bleul, Lisa ; Willmann, Matthias ; Ebner, Patrick ; Götz, Friedrich ; Wolz, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerobic conditions</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - pharmacology</topic><topic>Biological Sciences</topic><topic>Ciprofloxacin</topic><topic>Detection</topic><topic>Evolution, Molecular</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hypoxia</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oxidative Stress</topic><topic>Oxygen</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Phenols</topic><topic>Phenotypes</topic><topic>Physical fitness</topic><topic>PNAS Plus</topic><topic>Population</topic><topic>Quorum Sensing</topic><topic>Reactive oxygen species</topic><topic>Reproductive fitness</topic><topic>Secretion</topic><topic>Social behavior</topic><topic>Social factors</topic><topic>Social interactions</topic><topic>Staphylococcal Infections - genetics</topic><topic>Staphylococcal Infections - metabolism</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - pathogenicity</topic><topic>Toxins</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Shilpa Elizabeth</creatorcontrib><creatorcontrib>Hrubesch, Jennifer</creatorcontrib><creatorcontrib>Breuing, Inga</creatorcontrib><creatorcontrib>Vetter, Naisa</creatorcontrib><creatorcontrib>Korn, Natalya</creatorcontrib><creatorcontrib>Hennemann, Katja</creatorcontrib><creatorcontrib>Bleul, Lisa</creatorcontrib><creatorcontrib>Willmann, Matthias</creatorcontrib><creatorcontrib>Ebner, Patrick</creatorcontrib><creatorcontrib>Götz, Friedrich</creatorcontrib><creatorcontrib>Wolz, Christiane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Shilpa Elizabeth</au><au>Hrubesch, Jennifer</au><au>Breuing, Inga</au><au>Vetter, Naisa</au><au>Korn, Natalya</au><au>Hennemann, Katja</au><au>Bleul, Lisa</au><au>Willmann, Matthias</au><au>Ebner, Patrick</au><au>Götz, Friedrich</au><au>Wolz, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-09-17</date><risdate>2019</risdate><volume>116</volume><issue>38</issue><spage>19145</spage><epage>19154</epage><pages>19145-19154</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31488708</pmid><doi>10.1073/pnas.1902752116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0095-4640</orcidid><orcidid>https://orcid.org/0000-0003-3909-5281</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19145-19154 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754547 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central |
subjects | Aerobic conditions Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Toxins - pharmacology Biological Sciences Ciprofloxacin Detection Evolution, Molecular Gene Expression Regulation, Bacterial Hypoxia Mutants Mutation Oxidative Stress Oxygen Pathogens Peptides Phenols Phenotypes Physical fitness PNAS Plus Population Quorum Sensing Reactive oxygen species Reproductive fitness Secretion Social behavior Social factors Social interactions Staphylococcal Infections - genetics Staphylococcal Infections - metabolism Staphylococcal Infections - microbiology Staphylococcus aureus Staphylococcus aureus - drug effects Staphylococcus aureus - genetics Staphylococcus aureus - pathogenicity Toxins Trans-Activators - genetics Trans-Activators - metabolism Virulence |
title | Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20drives%20the%20selection%20of%20quorum%20sensing%20mutants%20in%20the%20Staphylococcus%20aureus%20population&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=George,%20Shilpa%20Elizabeth&rft.date=2019-09-17&rft.volume=116&rft.issue=38&rft.spage=19145&rft.epage=19154&rft.pages=19145-19154&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902752116&rft_dat=%3Cjstor_pubme%3E26851678%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294473839&rft_id=info:pmid/31488708&rft_jstor_id=26851678&rfr_iscdi=true |