Loading…

Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population

Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2019-09, Vol.116 (38), p.19145-19154
Main Authors: George, Shilpa Elizabeth, Hrubesch, Jennifer, Breuing, Inga, Vetter, Naisa, Korn, Natalya, Hennemann, Katja, Bleul, Lisa, Willmann, Matthias, Ebner, Patrick, Götz, Friedrich, Wolz, Christiane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83
cites cdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83
container_end_page 19154
container_issue 38
container_start_page 19145
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator George, Shilpa Elizabeth
Hrubesch, Jennifer
Breuing, Inga
Vetter, Naisa
Korn, Natalya
Hennemann, Katja
Bleul, Lisa
Willmann, Matthias
Ebner, Patrick
Götz, Friedrich
Wolz, Christiane
description Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.
doi_str_mv 10.1073/pnas.1902752116
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26851678</jstor_id><sourcerecordid>26851678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EokvhzAkUiQuXtB6_4lyQUMVLqtRDy9nyOs6uV4md-lHR_x5vtyyU02i--c2nGX0IvQV8Brij54vX6Qx6TDpOAMQztALcQytYj5-jFa56KxlhJ-hVSjuMcc8lfolOKDApOyxXaHP1yw06uzvbpBxtSs0Qa5OavK2KnazJLvgmjM1tCbHMVfPJ-U0zl6x9To3zD-h11sv2fgomGFNSo0u0tSxhKZPeO7xGL0Y9JfvmsZ6in1-_3Fx8by-vvv24-HzZGsZobmWPMQDptcEwAgYNXI5MEKrJSNYc7GgGS0DYTg6EWk4w0XbQtBNmLca1pKfo08F3KevZDsb6HPWkluhmHe9V0E49nXi3VZtwp0THGWddNfj4aBDDbbEpq9klY6dJextKUoRI0QNmklf0w3_oLpTo63uV6lk1k7Sv1PmBMjGkFO14PAaw2oeo9iGqvyHWjff__nDk_6RWgXcHYJdyiMc5EZKD6CT9DbBxpN8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473839</pqid></control><display><type>article</type><title>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>George, Shilpa Elizabeth ; Hrubesch, Jennifer ; Breuing, Inga ; Vetter, Naisa ; Korn, Natalya ; Hennemann, Katja ; Bleul, Lisa ; Willmann, Matthias ; Ebner, Patrick ; Götz, Friedrich ; Wolz, Christiane</creator><creatorcontrib>George, Shilpa Elizabeth ; Hrubesch, Jennifer ; Breuing, Inga ; Vetter, Naisa ; Korn, Natalya ; Hennemann, Katja ; Bleul, Lisa ; Willmann, Matthias ; Ebner, Patrick ; Götz, Friedrich ; Wolz, Christiane</creatorcontrib><description>Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902752116</identifier><identifier>PMID: 31488708</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aerobic conditions ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Toxins - pharmacology ; Biological Sciences ; Ciprofloxacin ; Detection ; Evolution, Molecular ; Gene Expression Regulation, Bacterial ; Hypoxia ; Mutants ; Mutation ; Oxidative Stress ; Oxygen ; Pathogens ; Peptides ; Phenols ; Phenotypes ; Physical fitness ; PNAS Plus ; Population ; Quorum Sensing ; Reactive oxygen species ; Reproductive fitness ; Secretion ; Social behavior ; Social factors ; Social interactions ; Staphylococcal Infections - genetics ; Staphylococcal Infections - metabolism ; Staphylococcal Infections - microbiology ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - genetics ; Staphylococcus aureus - pathogenicity ; Toxins ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Virulence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19145-19154</ispartof><rights>Copyright National Academy of Sciences Sep 17, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</citedby><cites>FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</cites><orcidid>0000-0003-0095-4640 ; 0000-0003-3909-5281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26851678$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26851678$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31488708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Shilpa Elizabeth</creatorcontrib><creatorcontrib>Hrubesch, Jennifer</creatorcontrib><creatorcontrib>Breuing, Inga</creatorcontrib><creatorcontrib>Vetter, Naisa</creatorcontrib><creatorcontrib>Korn, Natalya</creatorcontrib><creatorcontrib>Hennemann, Katja</creatorcontrib><creatorcontrib>Bleul, Lisa</creatorcontrib><creatorcontrib>Willmann, Matthias</creatorcontrib><creatorcontrib>Ebner, Patrick</creatorcontrib><creatorcontrib>Götz, Friedrich</creatorcontrib><creatorcontrib>Wolz, Christiane</creatorcontrib><title>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.</description><subject>Aerobic conditions</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - pharmacology</subject><subject>Biological Sciences</subject><subject>Ciprofloxacin</subject><subject>Detection</subject><subject>Evolution, Molecular</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hypoxia</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oxidative Stress</subject><subject>Oxygen</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Phenols</subject><subject>Phenotypes</subject><subject>Physical fitness</subject><subject>PNAS Plus</subject><subject>Population</subject><subject>Quorum Sensing</subject><subject>Reactive oxygen species</subject><subject>Reproductive fitness</subject><subject>Secretion</subject><subject>Social behavior</subject><subject>Social factors</subject><subject>Social interactions</subject><subject>Staphylococcal Infections - genetics</subject><subject>Staphylococcal Infections - metabolism</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - pathogenicity</subject><subject>Toxins</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Virulence</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkctv1DAQxi0EokvhzAkUiQuXtB6_4lyQUMVLqtRDy9nyOs6uV4md-lHR_x5vtyyU02i--c2nGX0IvQV8Brij54vX6Qx6TDpOAMQztALcQytYj5-jFa56KxlhJ-hVSjuMcc8lfolOKDApOyxXaHP1yw06uzvbpBxtSs0Qa5OavK2KnazJLvgmjM1tCbHMVfPJ-U0zl6x9To3zD-h11sv2fgomGFNSo0u0tSxhKZPeO7xGL0Y9JfvmsZ6in1-_3Fx8by-vvv24-HzZGsZobmWPMQDptcEwAgYNXI5MEKrJSNYc7GgGS0DYTg6EWk4w0XbQtBNmLca1pKfo08F3KevZDsb6HPWkluhmHe9V0E49nXi3VZtwp0THGWddNfj4aBDDbbEpq9klY6dJextKUoRI0QNmklf0w3_oLpTo63uV6lk1k7Sv1PmBMjGkFO14PAaw2oeo9iGqvyHWjff__nDk_6RWgXcHYJdyiMc5EZKD6CT9DbBxpN8</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>George, Shilpa Elizabeth</creator><creator>Hrubesch, Jennifer</creator><creator>Breuing, Inga</creator><creator>Vetter, Naisa</creator><creator>Korn, Natalya</creator><creator>Hennemann, Katja</creator><creator>Bleul, Lisa</creator><creator>Willmann, Matthias</creator><creator>Ebner, Patrick</creator><creator>Götz, Friedrich</creator><creator>Wolz, Christiane</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0095-4640</orcidid><orcidid>https://orcid.org/0000-0003-3909-5281</orcidid></search><sort><creationdate>20190917</creationdate><title>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</title><author>George, Shilpa Elizabeth ; Hrubesch, Jennifer ; Breuing, Inga ; Vetter, Naisa ; Korn, Natalya ; Hennemann, Katja ; Bleul, Lisa ; Willmann, Matthias ; Ebner, Patrick ; Götz, Friedrich ; Wolz, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerobic conditions</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - pharmacology</topic><topic>Biological Sciences</topic><topic>Ciprofloxacin</topic><topic>Detection</topic><topic>Evolution, Molecular</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hypoxia</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oxidative Stress</topic><topic>Oxygen</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Phenols</topic><topic>Phenotypes</topic><topic>Physical fitness</topic><topic>PNAS Plus</topic><topic>Population</topic><topic>Quorum Sensing</topic><topic>Reactive oxygen species</topic><topic>Reproductive fitness</topic><topic>Secretion</topic><topic>Social behavior</topic><topic>Social factors</topic><topic>Social interactions</topic><topic>Staphylococcal Infections - genetics</topic><topic>Staphylococcal Infections - metabolism</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - pathogenicity</topic><topic>Toxins</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Shilpa Elizabeth</creatorcontrib><creatorcontrib>Hrubesch, Jennifer</creatorcontrib><creatorcontrib>Breuing, Inga</creatorcontrib><creatorcontrib>Vetter, Naisa</creatorcontrib><creatorcontrib>Korn, Natalya</creatorcontrib><creatorcontrib>Hennemann, Katja</creatorcontrib><creatorcontrib>Bleul, Lisa</creatorcontrib><creatorcontrib>Willmann, Matthias</creatorcontrib><creatorcontrib>Ebner, Patrick</creatorcontrib><creatorcontrib>Götz, Friedrich</creatorcontrib><creatorcontrib>Wolz, Christiane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Shilpa Elizabeth</au><au>Hrubesch, Jennifer</au><au>Breuing, Inga</au><au>Vetter, Naisa</au><au>Korn, Natalya</au><au>Hennemann, Katja</au><au>Bleul, Lisa</au><au>Willmann, Matthias</au><au>Ebner, Patrick</au><au>Götz, Friedrich</au><au>Wolz, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-09-17</date><risdate>2019</risdate><volume>116</volume><issue>38</issue><spage>19145</spage><epage>19154</epage><pages>19145-19154</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31488708</pmid><doi>10.1073/pnas.1902752116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0095-4640</orcidid><orcidid>https://orcid.org/0000-0003-3909-5281</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19145-19154
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754547
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central
subjects Aerobic conditions
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Toxins - pharmacology
Biological Sciences
Ciprofloxacin
Detection
Evolution, Molecular
Gene Expression Regulation, Bacterial
Hypoxia
Mutants
Mutation
Oxidative Stress
Oxygen
Pathogens
Peptides
Phenols
Phenotypes
Physical fitness
PNAS Plus
Population
Quorum Sensing
Reactive oxygen species
Reproductive fitness
Secretion
Social behavior
Social factors
Social interactions
Staphylococcal Infections - genetics
Staphylococcal Infections - metabolism
Staphylococcal Infections - microbiology
Staphylococcus aureus
Staphylococcus aureus - drug effects
Staphylococcus aureus - genetics
Staphylococcus aureus - pathogenicity
Toxins
Trans-Activators - genetics
Trans-Activators - metabolism
Virulence
title Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20drives%20the%20selection%20of%20quorum%20sensing%20mutants%20in%20the%20Staphylococcus%20aureus%20population&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=George,%20Shilpa%20Elizabeth&rft.date=2019-09-17&rft.volume=116&rft.issue=38&rft.spage=19145&rft.epage=19154&rft.pages=19145-19154&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902752116&rft_dat=%3Cjstor_pubme%3E26851678%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-89001129ac01f101a158f4623a2f2b51efcde216e78d23e5202aeda376cb6fb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294473839&rft_id=info:pmid/31488708&rft_jstor_id=26851678&rfr_iscdi=true