Loading…
Kindlin-3 in platelets and myeloid cells differentially regulates deep vein thrombosis in mice
Platelets and myeloid cells cooperate to promote deep vein thrombosis (DVT). Here we evaluated the role of kindlin-3, a key integrin activator in these cells, in regulating stenosis-induced DVT in mice. DVT was significantly suppressed in mice that express a kindlin-3 mutant defective for integrin b...
Saved in:
Published in: | Aging (Albany, NY.) NY.), 2019-08, Vol.11 (17), p.6951-6959 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Platelets and myeloid cells cooperate to promote deep vein thrombosis (DVT). Here we evaluated the role of kindlin-3, a key integrin activator in these cells, in regulating stenosis-induced DVT in mice. DVT was significantly suppressed in mice that express a kindlin-3 mutant defective for integrin binding, showing that kindlin-3-mediated integrin signaling in blood cells is required for DVT. While platelet-specific deficiency of kindlin-3 in Kindlin-3
PF4-Cre mice significantly suppressed DVT, deficiency of kindlin-3 specifically in myeloid cells in Kindlin-3
LysM-Cre mice remarkably enhanced the early development of DVT, indicating that kindlin-3 in platelets and myeloid cells can play distinct roles in regulating DVT. Mechanistically, the levels of neutrophil extracellular traps (NETs) in plasma, a key DVT facilitator, were significantly elevated in Kindlin-3
LysM-Cre mice upon the IVC stenosis; and treatment with either DNase I or PAD4 inhibitor could effectively compromise the enhancement of DVT in these mice, suggesting that kindlin-3 in neutrophils may affect DVT via restraining NET release. In addition, we found that the kindlin-3-integrin αIIbβ3 signaling in platelets was required to promote NET release. Together, our studies reveal that kindlin-3 in platelets and myeloid cells can differentially regulate DVT through orchestrating NET release, thus providing further mechanistic insights into DVT. |
---|---|
ISSN: | 1945-4589 1945-4589 |
DOI: | 10.18632/aging.102229 |