Loading…

Nitric Oxide/cGMP-Mediated Protein Kinase A Activation in the Antennal Lobes Plays an Important Role in Appetitive Reflex Habituation in the Honeybee

Habituation, a form of non-associative learning, is observed throughout the animal kingdom. However, in contrast to associative learning, little is known about the underlying molecular mechanisms. Using the appetitive proboscis extension reflex in honeybees, we show that the cAMP-dependent protein k...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2002-10, Vol.22 (19), p.8739-8747
Main Authors: Muller, Uli, Hildebrandt, Herbert
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Habituation, a form of non-associative learning, is observed throughout the animal kingdom. However, in contrast to associative learning, little is known about the underlying molecular mechanisms. Using the appetitive proboscis extension reflex in honeybees, we show that the cAMP-dependent protein kinase A (PKA) in the antennal lobe (AL) is implicated in the graded decline of behavioral response during habituation. Repeated stimulation leads to a slow and gradual increase in PKA activity superimposed on a fast transient PKA activation induced by each stimulus. These temporally distinct components of PKA activation are pharmacologically dissectible and are restricted to the AL on the stimulated side. Whereas the transient PKA activation induced by each stimulus requires monoaminergic transmission, the slow component of PKA activation is mediated by the nitric oxide (NO)/cGMP system. Local manipulation of the slow component of PKA activation in single ALs specifically interferes with the dynamic of habituation on the corresponding side. Our results provide strong evidence that NO/cGMP-mediated PKA activation in each AL contributes to temporal signal integration during habituation. Dishabituation by a sensory stimulus or spontaneous recovery from habituation does not require the PKA cascade. This provides evidence that the mechanisms underlying dishabituation and spontaneous recovery differ from those underlying temporal signal integration during habituation of the proboscis extension response.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.22-19-08739.2002