Loading…

Synaptic Calcium-Channel Function in Drosophila: Analysis and Transformation Rescue of Temperature-Sensitive Paralytic and Lethal Mutations of Cacophony

Voltage-gated calcium channels play a key role in chemical synaptic transmission by providing the calcium trigger for regulated neurotransmitter release. Genes encoding the primary structural subunit, alpha1, as well as accessory subunits of presynaptic calcium channels have now been identified in a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2002-07, Vol.22 (14), p.5856-5864
Main Authors: Kawasaki, Fumiko, Collins, Stephen C, Ordway, Richard W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Voltage-gated calcium channels play a key role in chemical synaptic transmission by providing the calcium trigger for regulated neurotransmitter release. Genes encoding the primary structural subunit, alpha1, as well as accessory subunits of presynaptic calcium channels have now been identified in a variety of organisms. The cacophony (cac) gene in Drosophila, also known as nightblind A, encodes a voltage-gated calcium-channel alpha1 subunit homologous to vertebrate alpha1 subunits implicated in neurotransmitter release. A recent genetic screen in our laboratory isolated cac(TS2), a conditional cac mutant exhibiting rapid paralysis at elevated temperatures. This mutant has allowed synaptic electrophysiology after acute perturbation of a specific calcium-channel gene product, demonstrating that cac encodes a primary calcium channel functioning in neurotransmitter release. Here we report the molecular lesion in cac(TS2), a missense mutation within a calcium-dependent regulatory domain of the alpha1 subunit, as well as phenotypic rescue of temperature-sensitive and lethal cac mutations by transgenic expression of a wild-type cac cDNA. Notably, rescue of rapid, calcium-triggered neurotransmitter release was achieved by neural expression of a single cDNA containing a subset of alternative exons and lacking any conserved synaptic-protein interaction sequence. Possible implications of these findings are discussed in the context of structure-function studies of synaptic calcium channels, as well as alternative splicing and mRNA editing of the cac transcript.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.22-14-05856.2002