Loading…

Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons

The generation of high-frequency spike bursts ("complex spikes"), either spontaneously or in response to depolarizing stimuli applied to the soma, is a notable feature in intracellular recordings from hippocampal CA1 pyramidal cells (PCs) in vivo. There is compelling evidence that the burs...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2001-06, Vol.21 (12), p.4173-4182
Main Authors: Su, Hailing, Alroy, Gil, Kirson, Eilon D, Yaari, Yoel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The generation of high-frequency spike bursts ("complex spikes"), either spontaneously or in response to depolarizing stimuli applied to the soma, is a notable feature in intracellular recordings from hippocampal CA1 pyramidal cells (PCs) in vivo. There is compelling evidence that the bursts are intrinsically generated by summation of large spike afterdepolarizations (ADPs). Using intracellular recordings in adult rat hippocampal slices, we show that intrinsic burst-firing in CA1 PCs is strongly dependent on the extracellular concentration of Ca(2+) ([Ca(2+)](o)). Thus, lowering [Ca(2+)](o) (by equimolar substitution with Mn(2+) or Mg(2+)) induced intrinsic bursting in nonbursters, whereas raising [Ca(2+)](o) suppressed intrinsic bursting in native bursters. The induction of intrinsic bursting by low [Ca(2+)](o) was associated with enlargement of the spike ADP. Low [Ca(2+)](o)-induced intrinsic bursts and their underlying ADPs were suppressed by drugs that reduce the persistent Na(+) current (I(NaP)), indicating that this current mediates the slow burst depolarization. Blocking Ca(2+)-activated K(+) currents with extracellular Ni(2+) or intracellular chelation of Ca(2+) did not induce intrinsic bursting. This and other evidence suggest that lowering [Ca(2+)](o) may induce intrinsic bursting by augmenting I(NaP). Because repetitive neuronal activity in the hippocampus is associated with marked decreases in [Ca(2+)](o), the regulation of intrinsic bursting by extracellular Ca(2+) may provide a mechanism for preferential recruitment of this firing mode during certain forms of hippocampal activation.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.21-12-04173.2001