Loading…

Systematic Analysis of Pigeons’ Discrimination of Pixelated Stimuli: A Hierarchical Pattern Recognition System Is Not Identifiable

Pigeons learned to discriminate two different patterns displayed with miniature light-emitting diode arrays. They were then tested with 84 interspersed, non-reinforced degraded pattern pairs. Choices ranged between 100% and 50% for one or other of the patterns. Stimuli consisting of few pixels yield...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-09, Vol.9 (1), p.13929-24, Article 13929
Main Authors: Delius, Juan D., Delius, Julia A. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pigeons learned to discriminate two different patterns displayed with miniature light-emitting diode arrays. They were then tested with 84 interspersed, non-reinforced degraded pattern pairs. Choices ranged between 100% and 50% for one or other of the patterns. Stimuli consisting of few pixels yielded low choice scores whereas those consisting of many pixels yielded a broad range of scores. Those patterns with a high number of pixels coinciding with those of the rewarded training stimulus were preferred and those with a high number of pixels coinciding with the non-rewarded training pattern were avoided; a discrimination index based on this correlated 0.74 with the pattern choices. Pixels common to both training patterns had a minimal influence. A pixel-by-pixel analysis revealed that eight pixels of one pattern and six pixels of the other pattern played a prominent role in the pigeons’ choices. These pixels were disposed in four and two clusters of neighbouring locations. A summary index calculated on this basis still only yielded a weak 0.73 correlation. The individual pigeons’ data furthermore showed that these clusters were a mere averaging mirage. The pigeons’ performance depends on deep learning in a midbrain-based multimillion synapse neuronal network. Pixelated visual patterns should be helpful when simulating perception of patterns with artificial networks.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-50212-1