Loading…

Demonstration of slow light in rubidium vapor using single photons from a trapped ion

Practical implementation of quantum networks is likely to interface different types of quantum systems. Photonically linked hybrid systems, combining unique properties of each constituent system, have typically required sources with the same photon emission wavelength. Trapped ions and neutral atoms...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2019-10, Vol.5 (10), p.eaav4651-eaav4651
Main Authors: Siverns, J D, Hannegan, J, Quraishi, Q
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Practical implementation of quantum networks is likely to interface different types of quantum systems. Photonically linked hybrid systems, combining unique properties of each constituent system, have typically required sources with the same photon emission wavelength. Trapped ions and neutral atoms both have compelling properties as nodes and memories in a quantum network but have never been photonically linked because of vastly different operating wavelengths. Here, we demonstrate the first interaction between neutral atoms and photons emitted from a single trapped ion. We use slow light in Rb vapor to delay photons originating from a trapped Ba ion by up to 13.5 ± 0.5 ns, using quantum frequency conversion to overcome the frequency difference between the ion and neutral atoms. The delay is tunable and preserves the temporal profile of the photons. This result showcases a hybrid photonic interface usable as a synchronization tool-a critical component in any future large-scale quantum network.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aav4651