Loading…

Finding Hadamard Matrices by a Quantum Annealing Machine

Finding a Hadamard matrix (H-matrix) among the set of all binary matrices of corresponding order is a hard problem, which potentially can be solved by quantum computing. We propose a method to formulate the Hamiltonian of finding H-matrix problem and address its implementation limitation on existing...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-10, Vol.9 (1), p.14380-12, Article 14380
Main Authors: Suksmono, Andriyan Bayu, Minato, Yuichiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-ea961f485b0aba76e0e4653ada08f3bc636876499d7029aca06746d4df8241853
cites cdi_FETCH-LOGICAL-c474t-ea961f485b0aba76e0e4653ada08f3bc636876499d7029aca06746d4df8241853
container_end_page 12
container_issue 1
container_start_page 14380
container_title Scientific reports
container_volume 9
creator Suksmono, Andriyan Bayu
Minato, Yuichiro
description Finding a Hadamard matrix (H-matrix) among the set of all binary matrices of corresponding order is a hard problem, which potentially can be solved by quantum computing. We propose a method to formulate the Hamiltonian of finding H-matrix problem and address its implementation limitation on existing quantum annealing machine (QAM) that allows up to quadratic terms, whereas the problem naturally introduces higher order ones. For an M -order H-matrix, such a limitation increases the number of variables from M 2 to ( M 3  +  M 2  −  M )/2, which makes the formulation of the Hamiltonian too exhaustive to do by hand. We use symbolic computing techniques to manage this problem. Three related cases are discussed: (1) finding N  
doi_str_mv 10.1038/s41598-019-50473-w
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6779766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301897703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ea961f485b0aba76e0e4653ada08f3bc636876499d7029aca06746d4df8241853</originalsourceid><addsrcrecordid>eNp9kUtLw0AUhQdRtNT-ARcScOMmOq_MYyNIsVaoiKDr4SaZ1Eg60ZnE0n_v1Nbnwtncgfudc-_lIHRE8BnBTJ0HTjKtUkx0mmEuWbrcQQOKeZZSRunuj_8BGoXwjOPLqOZE76MDFrWEEzJAalK7snbzZAolLMCXyS10vi5sSPJVAsl9D67rF8mlcxaaNXgLxVPt7CHaq6AJdrStQ_Q4uXoYT9PZ3fXN-HKWFlzyLrWgBam4ynIMOUhhseUiY3EYVhXLC8GEkoJrXUpMNRSAheSi5GWlKCcqY0N0sfF96fOFLQvrOg-NefF13HZlWqjN746rn8y8fTNCSi2FiAanWwPfvvY2dGZRh8I2DTjb9sFQhilXREsd0ZM_6HPbexfPW1NEaSkxixTdUIVvQ_C2-lqGYLPOxmyyMTEb85GNWUbR8c8zviSfSUSAbYAQW25u_ffsf2zfASp9mPI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301897703</pqid></control><display><type>article</type><title>Finding Hadamard Matrices by a Quantum Annealing Machine</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Suksmono, Andriyan Bayu ; Minato, Yuichiro</creator><creatorcontrib>Suksmono, Andriyan Bayu ; Minato, Yuichiro</creatorcontrib><description>Finding a Hadamard matrix (H-matrix) among the set of all binary matrices of corresponding order is a hard problem, which potentially can be solved by quantum computing. We propose a method to formulate the Hamiltonian of finding H-matrix problem and address its implementation limitation on existing quantum annealing machine (QAM) that allows up to quadratic terms, whereas the problem naturally introduces higher order ones. For an M -order H-matrix, such a limitation increases the number of variables from M 2 to ( M 3  +  M 2  −  M )/2, which makes the formulation of the Hamiltonian too exhaustive to do by hand. We use symbolic computing techniques to manage this problem. Three related cases are discussed: (1) finding N  &lt;  M orthogonal binary vectors, (2) finding M -orthogonal binary vectors, which is equivalent to finding a H-matrix, and (3) finding N -deleted vectors of an M -order H-matrix. Solutions of the problems by a 2-body simulated annealing software and by an actual quantum annealing hardware are also discussed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-50473-w</identifier><identifier>PMID: 31591411</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/259 ; 639/766/483/481 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-10, Vol.9 (1), p.14380-12, Article 14380</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ea961f485b0aba76e0e4653ada08f3bc636876499d7029aca06746d4df8241853</citedby><cites>FETCH-LOGICAL-c474t-ea961f485b0aba76e0e4653ada08f3bc636876499d7029aca06746d4df8241853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301897703/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301897703?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31591411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suksmono, Andriyan Bayu</creatorcontrib><creatorcontrib>Minato, Yuichiro</creatorcontrib><title>Finding Hadamard Matrices by a Quantum Annealing Machine</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Finding a Hadamard matrix (H-matrix) among the set of all binary matrices of corresponding order is a hard problem, which potentially can be solved by quantum computing. We propose a method to formulate the Hamiltonian of finding H-matrix problem and address its implementation limitation on existing quantum annealing machine (QAM) that allows up to quadratic terms, whereas the problem naturally introduces higher order ones. For an M -order H-matrix, such a limitation increases the number of variables from M 2 to ( M 3  +  M 2  −  M )/2, which makes the formulation of the Hamiltonian too exhaustive to do by hand. We use symbolic computing techniques to manage this problem. Three related cases are discussed: (1) finding N  &lt;  M orthogonal binary vectors, (2) finding M -orthogonal binary vectors, which is equivalent to finding a H-matrix, and (3) finding N -deleted vectors of an M -order H-matrix. Solutions of the problems by a 2-body simulated annealing software and by an actual quantum annealing hardware are also discussed.</description><subject>639/766/259</subject><subject>639/766/483/481</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtLw0AUhQdRtNT-ARcScOMmOq_MYyNIsVaoiKDr4SaZ1Eg60ZnE0n_v1Nbnwtncgfudc-_lIHRE8BnBTJ0HTjKtUkx0mmEuWbrcQQOKeZZSRunuj_8BGoXwjOPLqOZE76MDFrWEEzJAalK7snbzZAolLMCXyS10vi5sSPJVAsl9D67rF8mlcxaaNXgLxVPt7CHaq6AJdrStQ_Q4uXoYT9PZ3fXN-HKWFlzyLrWgBam4ynIMOUhhseUiY3EYVhXLC8GEkoJrXUpMNRSAheSi5GWlKCcqY0N0sfF96fOFLQvrOg-NefF13HZlWqjN746rn8y8fTNCSi2FiAanWwPfvvY2dGZRh8I2DTjb9sFQhilXREsd0ZM_6HPbexfPW1NEaSkxixTdUIVvQ_C2-lqGYLPOxmyyMTEb85GNWUbR8c8zviSfSUSAbYAQW25u_ffsf2zfASp9mPI</recordid><startdate>20191007</startdate><enddate>20191007</enddate><creator>Suksmono, Andriyan Bayu</creator><creator>Minato, Yuichiro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191007</creationdate><title>Finding Hadamard Matrices by a Quantum Annealing Machine</title><author>Suksmono, Andriyan Bayu ; Minato, Yuichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ea961f485b0aba76e0e4653ada08f3bc636876499d7029aca06746d4df8241853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/259</topic><topic>639/766/483/481</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suksmono, Andriyan Bayu</creatorcontrib><creatorcontrib>Minato, Yuichiro</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suksmono, Andriyan Bayu</au><au>Minato, Yuichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Hadamard Matrices by a Quantum Annealing Machine</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-10-07</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>14380</spage><epage>12</epage><pages>14380-12</pages><artnum>14380</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Finding a Hadamard matrix (H-matrix) among the set of all binary matrices of corresponding order is a hard problem, which potentially can be solved by quantum computing. We propose a method to formulate the Hamiltonian of finding H-matrix problem and address its implementation limitation on existing quantum annealing machine (QAM) that allows up to quadratic terms, whereas the problem naturally introduces higher order ones. For an M -order H-matrix, such a limitation increases the number of variables from M 2 to ( M 3  +  M 2  −  M )/2, which makes the formulation of the Hamiltonian too exhaustive to do by hand. We use symbolic computing techniques to manage this problem. Three related cases are discussed: (1) finding N  &lt;  M orthogonal binary vectors, (2) finding M -orthogonal binary vectors, which is equivalent to finding a H-matrix, and (3) finding N -deleted vectors of an M -order H-matrix. Solutions of the problems by a 2-body simulated annealing software and by an actual quantum annealing hardware are also discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31591411</pmid><doi>10.1038/s41598-019-50473-w</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-10, Vol.9 (1), p.14380-12, Article 14380
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6779766
source PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/259
639/766/483/481
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Finding Hadamard Matrices by a Quantum Annealing Machine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Hadamard%20Matrices%20by%20a%20Quantum%20Annealing%20Machine&rft.jtitle=Scientific%20reports&rft.au=Suksmono,%20Andriyan%20Bayu&rft.date=2019-10-07&rft.volume=9&rft.issue=1&rft.spage=14380&rft.epage=12&rft.pages=14380-12&rft.artnum=14380&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-50473-w&rft_dat=%3Cproquest_pubme%3E2301897703%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-ea961f485b0aba76e0e4653ada08f3bc636876499d7029aca06746d4df8241853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301897703&rft_id=info:pmid/31591411&rfr_iscdi=true