Loading…

Impairments in High-Frequency Transmission, Synaptic Vesicle Docking, and Synaptic Protein Distribution in the Hippocampus of BDNF Knockout Mice

Brain-derived neurotrophic factor (BDNF) promotes long-term potentiation (LTP) at hippocampal CA1 synapses by a presynaptic enhancement of synaptic transmission during high-frequency stimulation (HFS). Here we have investigated the mechanisms of BDNF action using two lines of BDNF knockout mice. Amo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1999-06, Vol.19 (12), p.4972-4983
Main Authors: Pozzo-Miller, Lucas D, Gottschalk, Wolfram, Zhang, Li, McDermott, Kathryn, Du, Jing, Gopalakrishnan, Raj, Oho, Chikara, Sheng, Zu-Hang, Lu, Bai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain-derived neurotrophic factor (BDNF) promotes long-term potentiation (LTP) at hippocampal CA1 synapses by a presynaptic enhancement of synaptic transmission during high-frequency stimulation (HFS). Here we have investigated the mechanisms of BDNF action using two lines of BDNF knockout mice. Among other presynaptic impairments, the mutant mice exhibited more pronounced synaptic fatigue at CA1 synapses during high-frequency stimulation, compared with wild-type animals. Quantitative analysis of CA1 synapses revealed a significant reduction in the number of vesicles docked at presynaptic active zones in the mutant mice. Synaptosomes prepared from the mutant hippocampus exhibited a marked decrease in the levels of synaptophysin as well as synaptobrevin [vesicle-associated membrane protein (VAMP-2)], a protein known to be involved in vesicle docking and fusion. Treatment of the mutant slices with BDNF reversed the electrophysiological and biochemical deficits in the hippocampal synapses. Taken together, these results suggest a novel role for BDNF in the mobilization and/or docking of synaptic vesicles to presynaptic active zones.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.19-12-04972.1999