Loading…
Spatio-temporal deep learning models for tip force estimation during needle insertion
Purpose Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces...
Saved in:
Published in: | International journal for computer assisted radiology and surgery 2019-09, Vol.14 (9), p.1485-1493 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3 |
container_end_page | 1493 |
container_issue | 9 |
container_start_page | 1485 |
container_title | International journal for computer assisted radiology and surgery |
container_volume | 14 |
creator | Gessert, Nils Priegnitz, Torben Saathoff, Thore Antoni, Sven-Thomas Meyer, David Hamann, Moritz Franz Jünemann, Klaus-Peter Otte, Christoph Schlaefer, Alexander |
description | Purpose
Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates.
Methods
We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing.
Results
The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of
1.59
±
1.3
mN
and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application.
Conclusions
Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems. |
doi_str_mv | 10.1007/s11548-019-02006-z |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6785597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233862997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</originalsourceid><addsrcrecordid>eNp9kUtP3TAQha0KVB7tH-gCRWLDJsXjR-xsKlVXPCohsQDWluPMpUGJndoJEvz6Olx6S7tg47Hsb47n-BDyBehXoFSdJgApdEmhLimjtCqfP5B90BWUlWD1znYPdI8cpPRAqZCKy49kjwMIpUHvk7ub0U5dKCccxhBtX7SIY9Gjjb7z98UQWuxTsQ6xmLpxqQ4LTFM3LF2-aOe4YB6x7bHofMK4nH8iu2vbJ_z8Wg_J7fnZ7eqyvLq--LH6flU6ocRUggNBUbZSN-vKAUehUNlKI4DVuUolGUcL0mnUDlvBGiYlk6x1dVM3_JB828iOczNg69BP2YIZYx4vPplgO_Pvje9-mvvwaCqlpaxVFjh5FYjh15x9maFLDvveegxzMoxxritWv6DH_6EPYY4-uzOMU864zGum2IZyMaQUcb0dBqhZQjOb0EwOzbyEZp5z09FbG9uWPyllgG-ANC7fjfHv2-_I_gYkxKSJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303235303</pqid></control><display><type>article</type><title>Spatio-temporal deep learning models for tip force estimation during needle insertion</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Gessert, Nils ; Priegnitz, Torben ; Saathoff, Thore ; Antoni, Sven-Thomas ; Meyer, David ; Hamann, Moritz Franz ; Jünemann, Klaus-Peter ; Otte, Christoph ; Schlaefer, Alexander</creator><creatorcontrib>Gessert, Nils ; Priegnitz, Torben ; Saathoff, Thore ; Antoni, Sven-Thomas ; Meyer, David ; Hamann, Moritz Franz ; Jünemann, Klaus-Peter ; Otte, Christoph ; Schlaefer, Alexander</creatorcontrib><description>Purpose
Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates.
Methods
We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing.
Results
The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of
1.59
±
1.3
mN
and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application.
Conclusions
Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-019-02006-z</identifier><identifier>PMID: 31147818</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Architecture ; Biopsy - instrumentation ; Biopsy - methods ; Brachytherapy - instrumentation ; Brachytherapy - methods ; Calibration ; Computer Imaging ; Computer Science ; Correlation coefficients ; Data processing ; Deep Learning ; Deformation effects ; Deformation mechanisms ; Depth profiling ; Equipment Design ; Fiber optics ; Health Informatics ; Humans ; Imaging ; Machine learning ; Mechanical Phenomena ; Medicine ; Medicine & Public Health ; Needles ; Optical fibers ; Original ; Original Article ; Pattern Recognition and Graphics ; Prostate ; Radiation therapy ; Radiology ; Spatial data ; Stiffness ; Surgery ; Tomography, Optical Coherence ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2019-09, Vol.14 (9), p.1485-1493</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</citedby><cites>FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</cites><orcidid>0000-0001-6325-5092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31147818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gessert, Nils</creatorcontrib><creatorcontrib>Priegnitz, Torben</creatorcontrib><creatorcontrib>Saathoff, Thore</creatorcontrib><creatorcontrib>Antoni, Sven-Thomas</creatorcontrib><creatorcontrib>Meyer, David</creatorcontrib><creatorcontrib>Hamann, Moritz Franz</creatorcontrib><creatorcontrib>Jünemann, Klaus-Peter</creatorcontrib><creatorcontrib>Otte, Christoph</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><title>Spatio-temporal deep learning models for tip force estimation during needle insertion</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose
Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates.
Methods
We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing.
Results
The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of
1.59
±
1.3
mN
and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application.
Conclusions
Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Biopsy - instrumentation</subject><subject>Biopsy - methods</subject><subject>Brachytherapy - instrumentation</subject><subject>Brachytherapy - methods</subject><subject>Calibration</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Correlation coefficients</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Depth profiling</subject><subject>Equipment Design</subject><subject>Fiber optics</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Mechanical Phenomena</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Needles</subject><subject>Optical fibers</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Prostate</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Spatial data</subject><subject>Stiffness</subject><subject>Surgery</subject><subject>Tomography, Optical Coherence</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3TAQha0KVB7tH-gCRWLDJsXjR-xsKlVXPCohsQDWluPMpUGJndoJEvz6Olx6S7tg47Hsb47n-BDyBehXoFSdJgApdEmhLimjtCqfP5B90BWUlWD1znYPdI8cpPRAqZCKy49kjwMIpUHvk7ub0U5dKCccxhBtX7SIY9Gjjb7z98UQWuxTsQ6xmLpxqQ4LTFM3LF2-aOe4YB6x7bHofMK4nH8iu2vbJ_z8Wg_J7fnZ7eqyvLq--LH6flU6ocRUggNBUbZSN-vKAUehUNlKI4DVuUolGUcL0mnUDlvBGiYlk6x1dVM3_JB828iOczNg69BP2YIZYx4vPplgO_Pvje9-mvvwaCqlpaxVFjh5FYjh15x9maFLDvveegxzMoxxritWv6DH_6EPYY4-uzOMU864zGum2IZyMaQUcb0dBqhZQjOb0EwOzbyEZp5z09FbG9uWPyllgG-ANC7fjfHv2-_I_gYkxKSJ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Gessert, Nils</creator><creator>Priegnitz, Torben</creator><creator>Saathoff, Thore</creator><creator>Antoni, Sven-Thomas</creator><creator>Meyer, David</creator><creator>Hamann, Moritz Franz</creator><creator>Jünemann, Klaus-Peter</creator><creator>Otte, Christoph</creator><creator>Schlaefer, Alexander</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6325-5092</orcidid></search><sort><creationdate>20190901</creationdate><title>Spatio-temporal deep learning models for tip force estimation during needle insertion</title><author>Gessert, Nils ; Priegnitz, Torben ; Saathoff, Thore ; Antoni, Sven-Thomas ; Meyer, David ; Hamann, Moritz Franz ; Jünemann, Klaus-Peter ; Otte, Christoph ; Schlaefer, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Biopsy - instrumentation</topic><topic>Biopsy - methods</topic><topic>Brachytherapy - instrumentation</topic><topic>Brachytherapy - methods</topic><topic>Calibration</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Correlation coefficients</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Depth profiling</topic><topic>Equipment Design</topic><topic>Fiber optics</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Mechanical Phenomena</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Needles</topic><topic>Optical fibers</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Prostate</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Spatial data</topic><topic>Stiffness</topic><topic>Surgery</topic><topic>Tomography, Optical Coherence</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gessert, Nils</creatorcontrib><creatorcontrib>Priegnitz, Torben</creatorcontrib><creatorcontrib>Saathoff, Thore</creatorcontrib><creatorcontrib>Antoni, Sven-Thomas</creatorcontrib><creatorcontrib>Meyer, David</creatorcontrib><creatorcontrib>Hamann, Moritz Franz</creatorcontrib><creatorcontrib>Jünemann, Klaus-Peter</creatorcontrib><creatorcontrib>Otte, Christoph</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gessert, Nils</au><au>Priegnitz, Torben</au><au>Saathoff, Thore</au><au>Antoni, Sven-Thomas</au><au>Meyer, David</au><au>Hamann, Moritz Franz</au><au>Jünemann, Klaus-Peter</au><au>Otte, Christoph</au><au>Schlaefer, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-temporal deep learning models for tip force estimation during needle insertion</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>14</volume><issue>9</issue><spage>1485</spage><epage>1493</epage><pages>1485-1493</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose
Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates.
Methods
We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing.
Results
The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of
1.59
±
1.3
mN
and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application.
Conclusions
Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31147818</pmid><doi>10.1007/s11548-019-02006-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6325-5092</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-6410 |
ispartof | International journal for computer assisted radiology and surgery, 2019-09, Vol.14 (9), p.1485-1493 |
issn | 1861-6410 1861-6429 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6785597 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algorithms Architecture Biopsy - instrumentation Biopsy - methods Brachytherapy - instrumentation Brachytherapy - methods Calibration Computer Imaging Computer Science Correlation coefficients Data processing Deep Learning Deformation effects Deformation mechanisms Depth profiling Equipment Design Fiber optics Health Informatics Humans Imaging Machine learning Mechanical Phenomena Medicine Medicine & Public Health Needles Optical fibers Original Original Article Pattern Recognition and Graphics Prostate Radiation therapy Radiology Spatial data Stiffness Surgery Tomography, Optical Coherence Vision |
title | Spatio-temporal deep learning models for tip force estimation during needle insertion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-temporal%20deep%20learning%20models%20for%20tip%20force%20estimation%20during%20needle%20insertion&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Gessert,%20Nils&rft.date=2019-09-01&rft.volume=14&rft.issue=9&rft.spage=1485&rft.epage=1493&rft.pages=1485-1493&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-019-02006-z&rft_dat=%3Cproquest_pubme%3E2233862997%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2303235303&rft_id=info:pmid/31147818&rfr_iscdi=true |