Loading…

Spatio-temporal deep learning models for tip force estimation during needle insertion

Purpose Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces...

Full description

Saved in:
Bibliographic Details
Published in:International journal for computer assisted radiology and surgery 2019-09, Vol.14 (9), p.1485-1493
Main Authors: Gessert, Nils, Priegnitz, Torben, Saathoff, Thore, Antoni, Sven-Thomas, Meyer, David, Hamann, Moritz Franz, Jünemann, Klaus-Peter, Otte, Christoph, Schlaefer, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3
cites cdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3
container_end_page 1493
container_issue 9
container_start_page 1485
container_title International journal for computer assisted radiology and surgery
container_volume 14
creator Gessert, Nils
Priegnitz, Torben
Saathoff, Thore
Antoni, Sven-Thomas
Meyer, David
Hamann, Moritz Franz
Jünemann, Klaus-Peter
Otte, Christoph
Schlaefer, Alexander
description Purpose Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates. Methods We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing. Results The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of 1.59 ± 1.3 mN and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application. Conclusions Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.
doi_str_mv 10.1007/s11548-019-02006-z
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6785597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233862997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</originalsourceid><addsrcrecordid>eNp9kUtP3TAQha0KVB7tH-gCRWLDJsXjR-xsKlVXPCohsQDWluPMpUGJndoJEvz6Olx6S7tg47Hsb47n-BDyBehXoFSdJgApdEmhLimjtCqfP5B90BWUlWD1znYPdI8cpPRAqZCKy49kjwMIpUHvk7ub0U5dKCccxhBtX7SIY9Gjjb7z98UQWuxTsQ6xmLpxqQ4LTFM3LF2-aOe4YB6x7bHofMK4nH8iu2vbJ_z8Wg_J7fnZ7eqyvLq--LH6flU6ocRUggNBUbZSN-vKAUehUNlKI4DVuUolGUcL0mnUDlvBGiYlk6x1dVM3_JB828iOczNg69BP2YIZYx4vPplgO_Pvje9-mvvwaCqlpaxVFjh5FYjh15x9maFLDvveegxzMoxxritWv6DH_6EPYY4-uzOMU864zGum2IZyMaQUcb0dBqhZQjOb0EwOzbyEZp5z09FbG9uWPyllgG-ANC7fjfHv2-_I_gYkxKSJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303235303</pqid></control><display><type>article</type><title>Spatio-temporal deep learning models for tip force estimation during needle insertion</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Gessert, Nils ; Priegnitz, Torben ; Saathoff, Thore ; Antoni, Sven-Thomas ; Meyer, David ; Hamann, Moritz Franz ; Jünemann, Klaus-Peter ; Otte, Christoph ; Schlaefer, Alexander</creator><creatorcontrib>Gessert, Nils ; Priegnitz, Torben ; Saathoff, Thore ; Antoni, Sven-Thomas ; Meyer, David ; Hamann, Moritz Franz ; Jünemann, Klaus-Peter ; Otte, Christoph ; Schlaefer, Alexander</creatorcontrib><description>Purpose Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates. Methods We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing. Results The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of 1.59 ± 1.3 mN and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application. Conclusions Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-019-02006-z</identifier><identifier>PMID: 31147818</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Architecture ; Biopsy - instrumentation ; Biopsy - methods ; Brachytherapy - instrumentation ; Brachytherapy - methods ; Calibration ; Computer Imaging ; Computer Science ; Correlation coefficients ; Data processing ; Deep Learning ; Deformation effects ; Deformation mechanisms ; Depth profiling ; Equipment Design ; Fiber optics ; Health Informatics ; Humans ; Imaging ; Machine learning ; Mechanical Phenomena ; Medicine ; Medicine &amp; Public Health ; Needles ; Optical fibers ; Original ; Original Article ; Pattern Recognition and Graphics ; Prostate ; Radiation therapy ; Radiology ; Spatial data ; Stiffness ; Surgery ; Tomography, Optical Coherence ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2019-09, Vol.14 (9), p.1485-1493</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</citedby><cites>FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</cites><orcidid>0000-0001-6325-5092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31147818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gessert, Nils</creatorcontrib><creatorcontrib>Priegnitz, Torben</creatorcontrib><creatorcontrib>Saathoff, Thore</creatorcontrib><creatorcontrib>Antoni, Sven-Thomas</creatorcontrib><creatorcontrib>Meyer, David</creatorcontrib><creatorcontrib>Hamann, Moritz Franz</creatorcontrib><creatorcontrib>Jünemann, Klaus-Peter</creatorcontrib><creatorcontrib>Otte, Christoph</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><title>Spatio-temporal deep learning models for tip force estimation during needle insertion</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates. Methods We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing. Results The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of 1.59 ± 1.3 mN and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application. Conclusions Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Biopsy - instrumentation</subject><subject>Biopsy - methods</subject><subject>Brachytherapy - instrumentation</subject><subject>Brachytherapy - methods</subject><subject>Calibration</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Correlation coefficients</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Depth profiling</subject><subject>Equipment Design</subject><subject>Fiber optics</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Mechanical Phenomena</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Needles</subject><subject>Optical fibers</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Prostate</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Spatial data</subject><subject>Stiffness</subject><subject>Surgery</subject><subject>Tomography, Optical Coherence</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3TAQha0KVB7tH-gCRWLDJsXjR-xsKlVXPCohsQDWluPMpUGJndoJEvz6Olx6S7tg47Hsb47n-BDyBehXoFSdJgApdEmhLimjtCqfP5B90BWUlWD1znYPdI8cpPRAqZCKy49kjwMIpUHvk7ub0U5dKCccxhBtX7SIY9Gjjb7z98UQWuxTsQ6xmLpxqQ4LTFM3LF2-aOe4YB6x7bHofMK4nH8iu2vbJ_z8Wg_J7fnZ7eqyvLq--LH6flU6ocRUggNBUbZSN-vKAUehUNlKI4DVuUolGUcL0mnUDlvBGiYlk6x1dVM3_JB828iOczNg69BP2YIZYx4vPplgO_Pvje9-mvvwaCqlpaxVFjh5FYjh15x9maFLDvveegxzMoxxritWv6DH_6EPYY4-uzOMU864zGum2IZyMaQUcb0dBqhZQjOb0EwOzbyEZp5z09FbG9uWPyllgG-ANC7fjfHv2-_I_gYkxKSJ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Gessert, Nils</creator><creator>Priegnitz, Torben</creator><creator>Saathoff, Thore</creator><creator>Antoni, Sven-Thomas</creator><creator>Meyer, David</creator><creator>Hamann, Moritz Franz</creator><creator>Jünemann, Klaus-Peter</creator><creator>Otte, Christoph</creator><creator>Schlaefer, Alexander</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6325-5092</orcidid></search><sort><creationdate>20190901</creationdate><title>Spatio-temporal deep learning models for tip force estimation during needle insertion</title><author>Gessert, Nils ; Priegnitz, Torben ; Saathoff, Thore ; Antoni, Sven-Thomas ; Meyer, David ; Hamann, Moritz Franz ; Jünemann, Klaus-Peter ; Otte, Christoph ; Schlaefer, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Biopsy - instrumentation</topic><topic>Biopsy - methods</topic><topic>Brachytherapy - instrumentation</topic><topic>Brachytherapy - methods</topic><topic>Calibration</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Correlation coefficients</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Depth profiling</topic><topic>Equipment Design</topic><topic>Fiber optics</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Mechanical Phenomena</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Needles</topic><topic>Optical fibers</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Prostate</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Spatial data</topic><topic>Stiffness</topic><topic>Surgery</topic><topic>Tomography, Optical Coherence</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gessert, Nils</creatorcontrib><creatorcontrib>Priegnitz, Torben</creatorcontrib><creatorcontrib>Saathoff, Thore</creatorcontrib><creatorcontrib>Antoni, Sven-Thomas</creatorcontrib><creatorcontrib>Meyer, David</creatorcontrib><creatorcontrib>Hamann, Moritz Franz</creatorcontrib><creatorcontrib>Jünemann, Klaus-Peter</creatorcontrib><creatorcontrib>Otte, Christoph</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gessert, Nils</au><au>Priegnitz, Torben</au><au>Saathoff, Thore</au><au>Antoni, Sven-Thomas</au><au>Meyer, David</au><au>Hamann, Moritz Franz</au><au>Jünemann, Klaus-Peter</au><au>Otte, Christoph</au><au>Schlaefer, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-temporal deep learning models for tip force estimation during needle insertion</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>14</volume><issue>9</issue><spage>1485</spage><epage>1493</epage><pages>1485-1493</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates. Methods We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing. Results The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of 1.59 ± 1.3 mN and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle’s application. Conclusions Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31147818</pmid><doi>10.1007/s11548-019-02006-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6325-5092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-6410
ispartof International journal for computer assisted radiology and surgery, 2019-09, Vol.14 (9), p.1485-1493
issn 1861-6410
1861-6429
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6785597
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Architecture
Biopsy - instrumentation
Biopsy - methods
Brachytherapy - instrumentation
Brachytherapy - methods
Calibration
Computer Imaging
Computer Science
Correlation coefficients
Data processing
Deep Learning
Deformation effects
Deformation mechanisms
Depth profiling
Equipment Design
Fiber optics
Health Informatics
Humans
Imaging
Machine learning
Mechanical Phenomena
Medicine
Medicine & Public Health
Needles
Optical fibers
Original
Original Article
Pattern Recognition and Graphics
Prostate
Radiation therapy
Radiology
Spatial data
Stiffness
Surgery
Tomography, Optical Coherence
Vision
title Spatio-temporal deep learning models for tip force estimation during needle insertion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-temporal%20deep%20learning%20models%20for%20tip%20force%20estimation%20during%20needle%20insertion&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Gessert,%20Nils&rft.date=2019-09-01&rft.volume=14&rft.issue=9&rft.spage=1485&rft.epage=1493&rft.pages=1485-1493&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-019-02006-z&rft_dat=%3Cproquest_pubme%3E2233862997%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-1c140e5d58bf6c13e47e7a68e11a8a6857523ea15c8e8ced42b255252dc9b9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2303235303&rft_id=info:pmid/31147818&rfr_iscdi=true