Loading…
Induction of a Specific Olfactory Memory Leads to a Long-Lasting Activation of Protein Kinase C in the Antennal Lobe of the Honeybee
In this study we investigated the role of protein kinase C (PKC) in associative learning of Apis mellifera. Changes in PKC activity induced by olfactory conditioning were measured in the antennal lobes, a brain structure involved in associative learning. Multiple conditioning trials inducing a memor...
Saved in:
Published in: | The Journal of neuroscience 1998-06, Vol.18 (11), p.4384-4392 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study we investigated the role of protein kinase C (PKC) in associative learning of Apis mellifera. Changes in PKC activity induced by olfactory conditioning were measured in the antennal lobes, a brain structure involved in associative learning. Multiple conditioning trials inducing a memory different from that induced by a single conditioning trial specifically cause an increase in PKC activity. This increase begins 1 hr after conditioning, lasts up to 3 d, and is attributable to an increased level of constitutive PKC. The increased level of constitutive PKC consists of an early proteolysis-dependent phase and a late phase that requires RNA and protein synthesis. Inhibition of the pathways resulting in constitutive PKC selectively impairs distinct phases of multiple-trial induced memory. The inhibition of the proteolytic mechanism has an instant effect on an early phase of multiple-trial induced memory but does not affect acquisition and the late phase of memory. Blocking of the transient PKC activation during conditioning does not affect the induction of memory formation. Thus, the constitutive PKC in the antennal lobe seems to contribute to the early phase of memory that is induced by multiple-trial conditioning. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.18-11-04384.1998 |