Loading…

Randomized Retinal Ganglion Cell Axon Routing at the Optic Chiasm of GAP-43-Deficient Mice: Association with Midline Recrossing and Lack of Normal Ipsilateral Axon Turning

During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1998-12, Vol.18 (24), p.10502-10513
Main Authors: Sretavan, David W, Kruger, Kelly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-792323a68a0c1640749c4e173a1d074135f3fe38192b267d6f16374c7226cb1a3
cites cdi_FETCH-LOGICAL-c485t-792323a68a0c1640749c4e173a1d074135f3fe38192b267d6f16374c7226cb1a3
container_end_page 10513
container_issue 24
container_start_page 10502
container_title The Journal of neuroscience
container_volume 18
creator Sretavan, David W
Kruger, Kelly
description During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on the opposite side. Previous studies have shown that RGC axons in GAP-43-deficient mice initially fail to grow from the optic chiasm to form optic tracts and are delayed temporarily in the midline region. Here we show that this delayed RGC axon exit from the chiasm is characterized by abnormal randomized axon routing into the ipsilateral and contralateral optic tracts, leading to duplicated representations of the visual world in both sides of the brain. Within the chiasm, individual contralaterally projecting axons grow in unusual semicircular trajectories, and the normal ipsilateral turning of ventral temporal axons is absent. These effects on both axon populations suggest that GAP-43 does not mediate pathfinding specifically for one or the other axon population but is more consistent with a model in which the initial pathfinding defect at the chiasm/tract transition zone leads to axons backing up into the chiasm, resulting in circular trajectories and eventual random axon exit into one or the other optic tract. Unusual RGC axon trajectories include chiasm midline recrossing similar to abnormal CNS midline recrossing in invertebrate "roundabout" mutants and Drosophila with altered calmodulin function. This resemblance and the fact that GAP-43 also has been proposed to regulate calmodulin availability raise the possibility that calmodulin function is involved in CNS midline axon guidance in both vertebrates and invertebrates.
doi_str_mv 10.1523/jneurosci.18-24-10502.1998
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69081243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-792323a68a0c1640749c4e173a1d074135f3fe38192b267d6f16374c7226cb1a3</originalsourceid><addsrcrecordid>eNqFUsuO0zAUtRBoKAOfgGSxQGxS_EoczwKpCjOlqExRmVlbruM0HhK7xMkE-CV-Eveh0bBiZfuec899-ADwBqMpTgl9f-fM0Pmg7RTnCWEJRikiUyxE_gRMIkPEIMJPwQQRjpKMcfYcvAjhDiHEEeZn4EzkKUnzfAL-rJUrfWt_mxKuTW-dauBcuW1jvYOFaRo4-xlvaz9EbAtVD_vawNWutxoWtVWhhb6C89nXhNHko6mstsb18IvV5gLOQvDaqn6vNdq-juGysc7ESjr2Hw6KroRLpb_vZa5918b6i12wjepNp07Vb4bORe5L8KxSTTCvTuc5uL26vCk-JcvVfFHMlolmedonXBBKqMpyhTTOGOJMaGYwpwqX8YFpWtHK0BwLsiEZL7MKZ5QzzQnJ9AYreg4-HHV3w6Y1pY4DxVbkrrOt6n5Jr6z8F3G2llt_LzMuKM1EFHh7Euj8j8GEXrY26LhM5YwfgswEyjFh9L9EzDGLLaJIvDgSD3vrTPXQDUZy7wn5-frydr36ViwkziVh8uAJufdETH79eJ6H1JMJIv7uiNd2W4-2MzLEb2giG8txHB_p0b-v4MP-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17142670</pqid></control><display><type>article</type><title>Randomized Retinal Ganglion Cell Axon Routing at the Optic Chiasm of GAP-43-Deficient Mice: Association with Midline Recrossing and Lack of Normal Ipsilateral Axon Turning</title><source>PubMed Central (PMC)</source><creator>Sretavan, David W ; Kruger, Kelly</creator><creatorcontrib>Sretavan, David W ; Kruger, Kelly</creatorcontrib><description>During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on the opposite side. Previous studies have shown that RGC axons in GAP-43-deficient mice initially fail to grow from the optic chiasm to form optic tracts and are delayed temporarily in the midline region. Here we show that this delayed RGC axon exit from the chiasm is characterized by abnormal randomized axon routing into the ipsilateral and contralateral optic tracts, leading to duplicated representations of the visual world in both sides of the brain. Within the chiasm, individual contralaterally projecting axons grow in unusual semicircular trajectories, and the normal ipsilateral turning of ventral temporal axons is absent. These effects on both axon populations suggest that GAP-43 does not mediate pathfinding specifically for one or the other axon population but is more consistent with a model in which the initial pathfinding defect at the chiasm/tract transition zone leads to axons backing up into the chiasm, resulting in circular trajectories and eventual random axon exit into one or the other optic tract. Unusual RGC axon trajectories include chiasm midline recrossing similar to abnormal CNS midline recrossing in invertebrate "roundabout" mutants and Drosophila with altered calmodulin function. This resemblance and the fact that GAP-43 also has been proposed to regulate calmodulin availability raise the possibility that calmodulin function is involved in CNS midline axon guidance in both vertebrates and invertebrates.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.18-24-10502.1998</identifier><identifier>PMID: 9852588</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Axons - metabolism ; Axons - physiology ; Cell Differentiation - physiology ; Embryo, Mammalian ; Functional Laterality - physiology ; GAP-43 Protein - genetics ; GAP-43 Protein - metabolism ; GAP-43 Protein - physiology ; Mice ; Mice, Knockout ; Optic Chiasm - embryology ; Retina - cytology ; Retina - embryology ; Retina - metabolism ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism</subject><ispartof>The Journal of neuroscience, 1998-12, Vol.18 (24), p.10502-10513</ispartof><rights>Copyright © 1998 Society for Neuroscience 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-792323a68a0c1640749c4e173a1d074135f3fe38192b267d6f16374c7226cb1a3</citedby><cites>FETCH-LOGICAL-c485t-792323a68a0c1640749c4e173a1d074135f3fe38192b267d6f16374c7226cb1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793369/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793369/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9852588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sretavan, David W</creatorcontrib><creatorcontrib>Kruger, Kelly</creatorcontrib><title>Randomized Retinal Ganglion Cell Axon Routing at the Optic Chiasm of GAP-43-Deficient Mice: Association with Midline Recrossing and Lack of Normal Ipsilateral Axon Turning</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on the opposite side. Previous studies have shown that RGC axons in GAP-43-deficient mice initially fail to grow from the optic chiasm to form optic tracts and are delayed temporarily in the midline region. Here we show that this delayed RGC axon exit from the chiasm is characterized by abnormal randomized axon routing into the ipsilateral and contralateral optic tracts, leading to duplicated representations of the visual world in both sides of the brain. Within the chiasm, individual contralaterally projecting axons grow in unusual semicircular trajectories, and the normal ipsilateral turning of ventral temporal axons is absent. These effects on both axon populations suggest that GAP-43 does not mediate pathfinding specifically for one or the other axon population but is more consistent with a model in which the initial pathfinding defect at the chiasm/tract transition zone leads to axons backing up into the chiasm, resulting in circular trajectories and eventual random axon exit into one or the other optic tract. Unusual RGC axon trajectories include chiasm midline recrossing similar to abnormal CNS midline recrossing in invertebrate "roundabout" mutants and Drosophila with altered calmodulin function. This resemblance and the fact that GAP-43 also has been proposed to regulate calmodulin availability raise the possibility that calmodulin function is involved in CNS midline axon guidance in both vertebrates and invertebrates.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Embryo, Mammalian</subject><subject>Functional Laterality - physiology</subject><subject>GAP-43 Protein - genetics</subject><subject>GAP-43 Protein - metabolism</subject><subject>GAP-43 Protein - physiology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Optic Chiasm - embryology</subject><subject>Retina - cytology</subject><subject>Retina - embryology</subject><subject>Retina - metabolism</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFUsuO0zAUtRBoKAOfgGSxQGxS_EoczwKpCjOlqExRmVlbruM0HhK7xMkE-CV-Eveh0bBiZfuec899-ADwBqMpTgl9f-fM0Pmg7RTnCWEJRikiUyxE_gRMIkPEIMJPwQQRjpKMcfYcvAjhDiHEEeZn4EzkKUnzfAL-rJUrfWt_mxKuTW-dauBcuW1jvYOFaRo4-xlvaz9EbAtVD_vawNWutxoWtVWhhb6C89nXhNHko6mstsb18IvV5gLOQvDaqn6vNdq-juGysc7ESjr2Hw6KroRLpb_vZa5918b6i12wjepNp07Vb4bORe5L8KxSTTCvTuc5uL26vCk-JcvVfFHMlolmedonXBBKqMpyhTTOGOJMaGYwpwqX8YFpWtHK0BwLsiEZL7MKZ5QzzQnJ9AYreg4-HHV3w6Y1pY4DxVbkrrOt6n5Jr6z8F3G2llt_LzMuKM1EFHh7Euj8j8GEXrY26LhM5YwfgswEyjFh9L9EzDGLLaJIvDgSD3vrTPXQDUZy7wn5-frydr36ViwkziVh8uAJufdETH79eJ6H1JMJIv7uiNd2W4-2MzLEb2giG8txHB_p0b-v4MP-</recordid><startdate>19981215</startdate><enddate>19981215</enddate><creator>Sretavan, David W</creator><creator>Kruger, Kelly</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19981215</creationdate><title>Randomized Retinal Ganglion Cell Axon Routing at the Optic Chiasm of GAP-43-Deficient Mice: Association with Midline Recrossing and Lack of Normal Ipsilateral Axon Turning</title><author>Sretavan, David W ; Kruger, Kelly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-792323a68a0c1640749c4e173a1d074135f3fe38192b267d6f16374c7226cb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Embryo, Mammalian</topic><topic>Functional Laterality - physiology</topic><topic>GAP-43 Protein - genetics</topic><topic>GAP-43 Protein - metabolism</topic><topic>GAP-43 Protein - physiology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Optic Chiasm - embryology</topic><topic>Retina - cytology</topic><topic>Retina - embryology</topic><topic>Retina - metabolism</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sretavan, David W</creatorcontrib><creatorcontrib>Kruger, Kelly</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sretavan, David W</au><au>Kruger, Kelly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Randomized Retinal Ganglion Cell Axon Routing at the Optic Chiasm of GAP-43-Deficient Mice: Association with Midline Recrossing and Lack of Normal Ipsilateral Axon Turning</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1998-12-15</date><risdate>1998</risdate><volume>18</volume><issue>24</issue><spage>10502</spage><epage>10513</epage><pages>10502-10513</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on the opposite side. Previous studies have shown that RGC axons in GAP-43-deficient mice initially fail to grow from the optic chiasm to form optic tracts and are delayed temporarily in the midline region. Here we show that this delayed RGC axon exit from the chiasm is characterized by abnormal randomized axon routing into the ipsilateral and contralateral optic tracts, leading to duplicated representations of the visual world in both sides of the brain. Within the chiasm, individual contralaterally projecting axons grow in unusual semicircular trajectories, and the normal ipsilateral turning of ventral temporal axons is absent. These effects on both axon populations suggest that GAP-43 does not mediate pathfinding specifically for one or the other axon population but is more consistent with a model in which the initial pathfinding defect at the chiasm/tract transition zone leads to axons backing up into the chiasm, resulting in circular trajectories and eventual random axon exit into one or the other optic tract. Unusual RGC axon trajectories include chiasm midline recrossing similar to abnormal CNS midline recrossing in invertebrate "roundabout" mutants and Drosophila with altered calmodulin function. This resemblance and the fact that GAP-43 also has been proposed to regulate calmodulin availability raise the possibility that calmodulin function is involved in CNS midline axon guidance in both vertebrates and invertebrates.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>9852588</pmid><doi>10.1523/jneurosci.18-24-10502.1998</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 1998-12, Vol.18 (24), p.10502-10513
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793369
source PubMed Central (PMC)
subjects Animals
Axons - metabolism
Axons - physiology
Cell Differentiation - physiology
Embryo, Mammalian
Functional Laterality - physiology
GAP-43 Protein - genetics
GAP-43 Protein - metabolism
GAP-43 Protein - physiology
Mice
Mice, Knockout
Optic Chiasm - embryology
Retina - cytology
Retina - embryology
Retina - metabolism
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - metabolism
title Randomized Retinal Ganglion Cell Axon Routing at the Optic Chiasm of GAP-43-Deficient Mice: Association with Midline Recrossing and Lack of Normal Ipsilateral Axon Turning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Randomized%20Retinal%20Ganglion%20Cell%20Axon%20Routing%20at%20the%20Optic%20Chiasm%20of%20GAP-43-Deficient%20Mice:%20Association%20with%20Midline%20Recrossing%20and%20Lack%20of%20Normal%20Ipsilateral%20Axon%20Turning&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Sretavan,%20David%20W&rft.date=1998-12-15&rft.volume=18&rft.issue=24&rft.spage=10502&rft.epage=10513&rft.pages=10502-10513&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.18-24-10502.1998&rft_dat=%3Cproquest_pubme%3E69081243%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-792323a68a0c1640749c4e173a1d074135f3fe38192b267d6f16374c7226cb1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17142670&rft_id=info:pmid/9852588&rfr_iscdi=true