Loading…
Tyrosine Phosphatases Regulate AMPA Receptor Trafficking during Metabotropic Glutamate Receptor-Mediated Long-Term Depression
Two forms of long-term depression (LTD), triggered by activation of NMDA receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), respectively, can be induced at CA1 synapses in the hippocampus. Compared with NMDAR-LTD, relatively little is known about mGluR-LTD. Here, we show that protein...
Saved in:
Published in: | The Journal of neuroscience 2006-03, Vol.26 (9), p.2544-2554 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two forms of long-term depression (LTD), triggered by activation of NMDA receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), respectively, can be induced at CA1 synapses in the hippocampus. Compared with NMDAR-LTD, relatively little is known about mGluR-LTD. Here, we show that protein tyrosine phosphatase (PTP) inhibitors, orthovanadate and phenylarsine oxide, selectively block mGluR-LTD induced by application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG-LTD), because NMDAR-LTD is unaffected by these inhibitors. Furthermore, DHPG-LTD measured using whole-cell recording is similarly blocked by either bath-applied or patch-loaded PTP inhibitors. These inhibitors also block the changes in paired-pulse facilitation and coefficient of variation that are associated with the expression of DHPG-LTD. DHPG treatment of hippocampal slices was associated with a decrease in the level of tyrosine phosphorylation of GluR2 AMPA receptor (AMPAR) subunits, an effect blocked by orthovanadate. Finally, in dissociated hippocampal neurons, orthovanadate blocked the ability of DHPG to reduce the number of AMPA receptor clusters on the surface of dendrites. Again, the effects of PTP blockade were selective, because NMDA-induced decreases in surface AMPAR clusters was unaffected by orthovanadate. Together, these data suggest that activation of postsynaptic PTP results in tyrosine dephosphorylation of AMPARs and their removal from the synapse. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.4322-05.2006 |