Loading…
Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus
NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear. Bi...
Saved in:
Published in: | EBioMedicine 2019-09, Vol.47, p.470-483 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3 |
container_end_page | 483 |
container_issue | |
container_start_page | 470 |
container_title | EBioMedicine |
container_volume | 47 |
creator | Yang, Qin Huang, Zifeng Luo, Yangfu Zheng, Fangshuo Hu, Yida Liu, Hui Zhu, Shuzhen He, Miaoqing Xu, Demei Li, Yun Yang, Min Yang, Yi Wei, Xiaobo Gao, Xiaoya Wang, Wei Ma, Junhong Ma, Yuanlin Wang, Xuefeng Wang, Qing |
description | NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear.
Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons.
We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472.
Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders.
The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report. |
doi_str_mv | 10.1016/j.ebiom.2019.08.050 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6796588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352396419305705</els_id><sourcerecordid>2283345645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</originalsourceid><addsrcrecordid>eNp9kc1u3CAURlHVqInSPEGlimU344D5MbNopTZqk0hRsknWCMN1zcgGF_Ck8_Z1ZtIo3XSBQHDud684CH2gpKKEyvNNBa2PY1UTuq6Iqoggb9BJzUS9YmvJ3746H6OznDeEECr4cqneoWNGecOFoCcoXofet774GHDs8O2jo9jY4re-7LApBcJsCmQcYE4xmAH3uwkS_La-mNYPeyo4fDnMt_U3PPUxLyvtBrNP9AGXHnDvpylaM05zfo-OOjNkOHveT9HDj-_3F1erm7vL64uvNysralFWDW-NYx0ICooy2lgABYSIulauA8W47KClDadOttRRCcpJ0nTWtkYZ6gw7RV8OudPcjuAshJLMoKfkR5N2Ohqv_30Jvtc_41bLZi2FUkvAp-eAFH_NkIsefbYwDCZAnLNeJmGMC8nFgrIDalPMOUH30oYS_WRLb_Teln6ypYnSi62l6uPrCV9q_rpZgM8HAJZ_2npIOlsPwYLzCWzRLvr_NvgD19irPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283345645</pqid></control><display><type>article</type><title>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Yang, Qin ; Huang, Zifeng ; Luo, Yangfu ; Zheng, Fangshuo ; Hu, Yida ; Liu, Hui ; Zhu, Shuzhen ; He, Miaoqing ; Xu, Demei ; Li, Yun ; Yang, Min ; Yang, Yi ; Wei, Xiaobo ; Gao, Xiaoya ; Wang, Wei ; Ma, Junhong ; Ma, Yuanlin ; Wang, Xuefeng ; Wang, Qing</creator><creatorcontrib>Yang, Qin ; Huang, Zifeng ; Luo, Yangfu ; Zheng, Fangshuo ; Hu, Yida ; Liu, Hui ; Zhu, Shuzhen ; He, Miaoqing ; Xu, Demei ; Li, Yun ; Yang, Min ; Yang, Yi ; Wei, Xiaobo ; Gao, Xiaoya ; Wang, Wei ; Ma, Junhong ; Ma, Yuanlin ; Wang, Xuefeng ; Wang, Qing</creatorcontrib><description>NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear.
Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons.
We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472.
Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders.
The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report.</description><identifier>ISSN: 2352-3964</identifier><identifier>EISSN: 2352-3964</identifier><identifier>DOI: 10.1016/j.ebiom.2019.08.050</identifier><identifier>PMID: 31474551</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Cognition ; Evoked Potentials - drug effects ; GluN2B phosphorylation ; Hippocampus ; Hippocampus - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - antagonists & inhibitors ; Intracellular Signaling Peptides and Proteins - metabolism ; Kainic Acid - adverse effects ; Mice ; NACHT and WD repeat domain-containing protein 1 ; Neuronal hyperexcitability ; Neuronal synaptic transmission ; Neurons - drug effects ; Neurons - metabolism ; NMDA receptor ; Phosphorylation ; Receptors, N-Methyl-D-Aspartate - metabolism ; Research paper ; Seizures - etiology ; Seizures - metabolism ; Seizures - physiopathology ; Synapses - genetics ; Synapses - metabolism ; Synaptic Transmission</subject><ispartof>EBioMedicine, 2019-09, Vol.47, p.470-483</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</citedby><cites>FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</cites><orcidid>0000-0002-3882-6540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352396419305705$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31474551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>Huang, Zifeng</creatorcontrib><creatorcontrib>Luo, Yangfu</creatorcontrib><creatorcontrib>Zheng, Fangshuo</creatorcontrib><creatorcontrib>Hu, Yida</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shuzhen</creatorcontrib><creatorcontrib>He, Miaoqing</creatorcontrib><creatorcontrib>Xu, Demei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wei, Xiaobo</creatorcontrib><creatorcontrib>Gao, Xiaoya</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ma, Junhong</creatorcontrib><creatorcontrib>Ma, Yuanlin</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</title><title>EBioMedicine</title><addtitle>EBioMedicine</addtitle><description>NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear.
Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons.
We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472.
Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders.
The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report.</description><subject>Animals</subject><subject>Cognition</subject><subject>Evoked Potentials - drug effects</subject><subject>GluN2B phosphorylation</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - antagonists & inhibitors</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kainic Acid - adverse effects</subject><subject>Mice</subject><subject>NACHT and WD repeat domain-containing protein 1</subject><subject>Neuronal hyperexcitability</subject><subject>Neuronal synaptic transmission</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>NMDA receptor</subject><subject>Phosphorylation</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Research paper</subject><subject>Seizures - etiology</subject><subject>Seizures - metabolism</subject><subject>Seizures - physiopathology</subject><subject>Synapses - genetics</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission</subject><issn>2352-3964</issn><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3CAURlHVqInSPEGlimU344D5MbNopTZqk0hRsknWCMN1zcgGF_Ck8_Z1ZtIo3XSBQHDud684CH2gpKKEyvNNBa2PY1UTuq6Iqoggb9BJzUS9YmvJ3746H6OznDeEECr4cqneoWNGecOFoCcoXofet774GHDs8O2jo9jY4re-7LApBcJsCmQcYE4xmAH3uwkS_La-mNYPeyo4fDnMt_U3PPUxLyvtBrNP9AGXHnDvpylaM05zfo-OOjNkOHveT9HDj-_3F1erm7vL64uvNysralFWDW-NYx0ICooy2lgABYSIulauA8W47KClDadOttRRCcpJ0nTWtkYZ6gw7RV8OudPcjuAshJLMoKfkR5N2Ohqv_30Jvtc_41bLZi2FUkvAp-eAFH_NkIsefbYwDCZAnLNeJmGMC8nFgrIDalPMOUH30oYS_WRLb_Teln6ypYnSi62l6uPrCV9q_rpZgM8HAJZ_2npIOlsPwYLzCWzRLvr_NvgD19irPQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Yang, Qin</creator><creator>Huang, Zifeng</creator><creator>Luo, Yangfu</creator><creator>Zheng, Fangshuo</creator><creator>Hu, Yida</creator><creator>Liu, Hui</creator><creator>Zhu, Shuzhen</creator><creator>He, Miaoqing</creator><creator>Xu, Demei</creator><creator>Li, Yun</creator><creator>Yang, Min</creator><creator>Yang, Yi</creator><creator>Wei, Xiaobo</creator><creator>Gao, Xiaoya</creator><creator>Wang, Wei</creator><creator>Ma, Junhong</creator><creator>Ma, Yuanlin</creator><creator>Wang, Xuefeng</creator><creator>Wang, Qing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3882-6540</orcidid></search><sort><creationdate>20190901</creationdate><title>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</title><author>Yang, Qin ; Huang, Zifeng ; Luo, Yangfu ; Zheng, Fangshuo ; Hu, Yida ; Liu, Hui ; Zhu, Shuzhen ; He, Miaoqing ; Xu, Demei ; Li, Yun ; Yang, Min ; Yang, Yi ; Wei, Xiaobo ; Gao, Xiaoya ; Wang, Wei ; Ma, Junhong ; Ma, Yuanlin ; Wang, Xuefeng ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cognition</topic><topic>Evoked Potentials - drug effects</topic><topic>GluN2B phosphorylation</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - antagonists & inhibitors</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kainic Acid - adverse effects</topic><topic>Mice</topic><topic>NACHT and WD repeat domain-containing protein 1</topic><topic>Neuronal hyperexcitability</topic><topic>Neuronal synaptic transmission</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>NMDA receptor</topic><topic>Phosphorylation</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Research paper</topic><topic>Seizures - etiology</topic><topic>Seizures - metabolism</topic><topic>Seizures - physiopathology</topic><topic>Synapses - genetics</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>Huang, Zifeng</creatorcontrib><creatorcontrib>Luo, Yangfu</creatorcontrib><creatorcontrib>Zheng, Fangshuo</creatorcontrib><creatorcontrib>Hu, Yida</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shuzhen</creatorcontrib><creatorcontrib>He, Miaoqing</creatorcontrib><creatorcontrib>Xu, Demei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wei, Xiaobo</creatorcontrib><creatorcontrib>Gao, Xiaoya</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ma, Junhong</creatorcontrib><creatorcontrib>Ma, Yuanlin</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qin</au><au>Huang, Zifeng</au><au>Luo, Yangfu</au><au>Zheng, Fangshuo</au><au>Hu, Yida</au><au>Liu, Hui</au><au>Zhu, Shuzhen</au><au>He, Miaoqing</au><au>Xu, Demei</au><au>Li, Yun</au><au>Yang, Min</au><au>Yang, Yi</au><au>Wei, Xiaobo</au><au>Gao, Xiaoya</au><au>Wang, Wei</au><au>Ma, Junhong</au><au>Ma, Yuanlin</au><au>Wang, Xuefeng</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</atitle><jtitle>EBioMedicine</jtitle><addtitle>EBioMedicine</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>47</volume><spage>470</spage><epage>483</epage><pages>470-483</pages><issn>2352-3964</issn><eissn>2352-3964</eissn><abstract>NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear.
Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons.
We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472.
Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders.
The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31474551</pmid><doi>10.1016/j.ebiom.2019.08.050</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3882-6540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-3964 |
ispartof | EBioMedicine, 2019-09, Vol.47, p.470-483 |
issn | 2352-3964 2352-3964 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6796588 |
source | ScienceDirect; PubMed Central |
subjects | Animals Cognition Evoked Potentials - drug effects GluN2B phosphorylation Hippocampus Hippocampus - metabolism Humans Intracellular Signaling Peptides and Proteins - antagonists & inhibitors Intracellular Signaling Peptides and Proteins - metabolism Kainic Acid - adverse effects Mice NACHT and WD repeat domain-containing protein 1 Neuronal hyperexcitability Neuronal synaptic transmission Neurons - drug effects Neurons - metabolism NMDA receptor Phosphorylation Receptors, N-Methyl-D-Aspartate - metabolism Research paper Seizures - etiology Seizures - metabolism Seizures - physiopathology Synapses - genetics Synapses - metabolism Synaptic Transmission |
title | Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Nwd1%20activity%20attenuates%20neuronal%20hyperexcitability%20and%20GluN2B%20phosphorylation%20in%20the%20hippocampus&rft.jtitle=EBioMedicine&rft.au=Yang,%20Qin&rft.date=2019-09-01&rft.volume=47&rft.spage=470&rft.epage=483&rft.pages=470-483&rft.issn=2352-3964&rft.eissn=2352-3964&rft_id=info:doi/10.1016/j.ebiom.2019.08.050&rft_dat=%3Cproquest_pubme%3E2283345645%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2283345645&rft_id=info:pmid/31474551&rfr_iscdi=true |