Loading…

Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus

NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear. Bi...

Full description

Saved in:
Bibliographic Details
Published in:EBioMedicine 2019-09, Vol.47, p.470-483
Main Authors: Yang, Qin, Huang, Zifeng, Luo, Yangfu, Zheng, Fangshuo, Hu, Yida, Liu, Hui, Zhu, Shuzhen, He, Miaoqing, Xu, Demei, Li, Yun, Yang, Min, Yang, Yi, Wei, Xiaobo, Gao, Xiaoya, Wang, Wei, Ma, Junhong, Ma, Yuanlin, Wang, Xuefeng, Wang, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3
cites cdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3
container_end_page 483
container_issue
container_start_page 470
container_title EBioMedicine
container_volume 47
creator Yang, Qin
Huang, Zifeng
Luo, Yangfu
Zheng, Fangshuo
Hu, Yida
Liu, Hui
Zhu, Shuzhen
He, Miaoqing
Xu, Demei
Li, Yun
Yang, Min
Yang, Yi
Wei, Xiaobo
Gao, Xiaoya
Wang, Wei
Ma, Junhong
Ma, Yuanlin
Wang, Xuefeng
Wang, Qing
description NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear. Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons. We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472. Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders. The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report.
doi_str_mv 10.1016/j.ebiom.2019.08.050
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6796588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352396419305705</els_id><sourcerecordid>2283345645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</originalsourceid><addsrcrecordid>eNp9kc1u3CAURlHVqInSPEGlimU344D5MbNopTZqk0hRsknWCMN1zcgGF_Ck8_Z1ZtIo3XSBQHDud684CH2gpKKEyvNNBa2PY1UTuq6Iqoggb9BJzUS9YmvJ3746H6OznDeEECr4cqneoWNGecOFoCcoXofet774GHDs8O2jo9jY4re-7LApBcJsCmQcYE4xmAH3uwkS_La-mNYPeyo4fDnMt_U3PPUxLyvtBrNP9AGXHnDvpylaM05zfo-OOjNkOHveT9HDj-_3F1erm7vL64uvNysralFWDW-NYx0ICooy2lgABYSIulauA8W47KClDadOttRRCcpJ0nTWtkYZ6gw7RV8OudPcjuAshJLMoKfkR5N2Ohqv_30Jvtc_41bLZi2FUkvAp-eAFH_NkIsefbYwDCZAnLNeJmGMC8nFgrIDalPMOUH30oYS_WRLb_Teln6ypYnSi62l6uPrCV9q_rpZgM8HAJZ_2npIOlsPwYLzCWzRLvr_NvgD19irPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283345645</pqid></control><display><type>article</type><title>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Yang, Qin ; Huang, Zifeng ; Luo, Yangfu ; Zheng, Fangshuo ; Hu, Yida ; Liu, Hui ; Zhu, Shuzhen ; He, Miaoqing ; Xu, Demei ; Li, Yun ; Yang, Min ; Yang, Yi ; Wei, Xiaobo ; Gao, Xiaoya ; Wang, Wei ; Ma, Junhong ; Ma, Yuanlin ; Wang, Xuefeng ; Wang, Qing</creator><creatorcontrib>Yang, Qin ; Huang, Zifeng ; Luo, Yangfu ; Zheng, Fangshuo ; Hu, Yida ; Liu, Hui ; Zhu, Shuzhen ; He, Miaoqing ; Xu, Demei ; Li, Yun ; Yang, Min ; Yang, Yi ; Wei, Xiaobo ; Gao, Xiaoya ; Wang, Wei ; Ma, Junhong ; Ma, Yuanlin ; Wang, Xuefeng ; Wang, Qing</creatorcontrib><description>NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear. Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons. We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472. Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders. The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report.</description><identifier>ISSN: 2352-3964</identifier><identifier>EISSN: 2352-3964</identifier><identifier>DOI: 10.1016/j.ebiom.2019.08.050</identifier><identifier>PMID: 31474551</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Cognition ; Evoked Potentials - drug effects ; GluN2B phosphorylation ; Hippocampus ; Hippocampus - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors ; Intracellular Signaling Peptides and Proteins - metabolism ; Kainic Acid - adverse effects ; Mice ; NACHT and WD repeat domain-containing protein 1 ; Neuronal hyperexcitability ; Neuronal synaptic transmission ; Neurons - drug effects ; Neurons - metabolism ; NMDA receptor ; Phosphorylation ; Receptors, N-Methyl-D-Aspartate - metabolism ; Research paper ; Seizures - etiology ; Seizures - metabolism ; Seizures - physiopathology ; Synapses - genetics ; Synapses - metabolism ; Synaptic Transmission</subject><ispartof>EBioMedicine, 2019-09, Vol.47, p.470-483</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</citedby><cites>FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</cites><orcidid>0000-0002-3882-6540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352396419305705$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31474551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>Huang, Zifeng</creatorcontrib><creatorcontrib>Luo, Yangfu</creatorcontrib><creatorcontrib>Zheng, Fangshuo</creatorcontrib><creatorcontrib>Hu, Yida</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shuzhen</creatorcontrib><creatorcontrib>He, Miaoqing</creatorcontrib><creatorcontrib>Xu, Demei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wei, Xiaobo</creatorcontrib><creatorcontrib>Gao, Xiaoya</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ma, Junhong</creatorcontrib><creatorcontrib>Ma, Yuanlin</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</title><title>EBioMedicine</title><addtitle>EBioMedicine</addtitle><description>NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear. Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons. We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472. Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders. The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report.</description><subject>Animals</subject><subject>Cognition</subject><subject>Evoked Potentials - drug effects</subject><subject>GluN2B phosphorylation</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kainic Acid - adverse effects</subject><subject>Mice</subject><subject>NACHT and WD repeat domain-containing protein 1</subject><subject>Neuronal hyperexcitability</subject><subject>Neuronal synaptic transmission</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>NMDA receptor</subject><subject>Phosphorylation</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Research paper</subject><subject>Seizures - etiology</subject><subject>Seizures - metabolism</subject><subject>Seizures - physiopathology</subject><subject>Synapses - genetics</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission</subject><issn>2352-3964</issn><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3CAURlHVqInSPEGlimU344D5MbNopTZqk0hRsknWCMN1zcgGF_Ck8_Z1ZtIo3XSBQHDud684CH2gpKKEyvNNBa2PY1UTuq6Iqoggb9BJzUS9YmvJ3746H6OznDeEECr4cqneoWNGecOFoCcoXofet774GHDs8O2jo9jY4re-7LApBcJsCmQcYE4xmAH3uwkS_La-mNYPeyo4fDnMt_U3PPUxLyvtBrNP9AGXHnDvpylaM05zfo-OOjNkOHveT9HDj-_3F1erm7vL64uvNysralFWDW-NYx0ICooy2lgABYSIulauA8W47KClDadOttRRCcpJ0nTWtkYZ6gw7RV8OudPcjuAshJLMoKfkR5N2Ohqv_30Jvtc_41bLZi2FUkvAp-eAFH_NkIsefbYwDCZAnLNeJmGMC8nFgrIDalPMOUH30oYS_WRLb_Teln6ypYnSi62l6uPrCV9q_rpZgM8HAJZ_2npIOlsPwYLzCWzRLvr_NvgD19irPQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Yang, Qin</creator><creator>Huang, Zifeng</creator><creator>Luo, Yangfu</creator><creator>Zheng, Fangshuo</creator><creator>Hu, Yida</creator><creator>Liu, Hui</creator><creator>Zhu, Shuzhen</creator><creator>He, Miaoqing</creator><creator>Xu, Demei</creator><creator>Li, Yun</creator><creator>Yang, Min</creator><creator>Yang, Yi</creator><creator>Wei, Xiaobo</creator><creator>Gao, Xiaoya</creator><creator>Wang, Wei</creator><creator>Ma, Junhong</creator><creator>Ma, Yuanlin</creator><creator>Wang, Xuefeng</creator><creator>Wang, Qing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3882-6540</orcidid></search><sort><creationdate>20190901</creationdate><title>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</title><author>Yang, Qin ; Huang, Zifeng ; Luo, Yangfu ; Zheng, Fangshuo ; Hu, Yida ; Liu, Hui ; Zhu, Shuzhen ; He, Miaoqing ; Xu, Demei ; Li, Yun ; Yang, Min ; Yang, Yi ; Wei, Xiaobo ; Gao, Xiaoya ; Wang, Wei ; Ma, Junhong ; Ma, Yuanlin ; Wang, Xuefeng ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cognition</topic><topic>Evoked Potentials - drug effects</topic><topic>GluN2B phosphorylation</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kainic Acid - adverse effects</topic><topic>Mice</topic><topic>NACHT and WD repeat domain-containing protein 1</topic><topic>Neuronal hyperexcitability</topic><topic>Neuronal synaptic transmission</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>NMDA receptor</topic><topic>Phosphorylation</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Research paper</topic><topic>Seizures - etiology</topic><topic>Seizures - metabolism</topic><topic>Seizures - physiopathology</topic><topic>Synapses - genetics</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>Huang, Zifeng</creatorcontrib><creatorcontrib>Luo, Yangfu</creatorcontrib><creatorcontrib>Zheng, Fangshuo</creatorcontrib><creatorcontrib>Hu, Yida</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shuzhen</creatorcontrib><creatorcontrib>He, Miaoqing</creatorcontrib><creatorcontrib>Xu, Demei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wei, Xiaobo</creatorcontrib><creatorcontrib>Gao, Xiaoya</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ma, Junhong</creatorcontrib><creatorcontrib>Ma, Yuanlin</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qin</au><au>Huang, Zifeng</au><au>Luo, Yangfu</au><au>Zheng, Fangshuo</au><au>Hu, Yida</au><au>Liu, Hui</au><au>Zhu, Shuzhen</au><au>He, Miaoqing</au><au>Xu, Demei</au><au>Li, Yun</au><au>Yang, Min</au><au>Yang, Yi</au><au>Wei, Xiaobo</au><au>Gao, Xiaoya</au><au>Wang, Wei</au><au>Ma, Junhong</au><au>Ma, Yuanlin</au><au>Wang, Xuefeng</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus</atitle><jtitle>EBioMedicine</jtitle><addtitle>EBioMedicine</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>47</volume><spage>470</spage><epage>483</epage><pages>470-483</pages><issn>2352-3964</issn><eissn>2352-3964</eissn><abstract>NACHT and WD repeat domain-containing protein 1 (Nwd1) is a member of the innate immune protein subfamily. Nwd1 contributes to the androgen receptor signaling pathway and is involved in axonal growth. However, the mechanisms that underlie pathophysiological dysfunction in seizures remain unclear. Biochemical methods were used to assess Nwd1 expression and localization in a mouse model of kainic acid (KA)-induced acute seizures and temporal lobe epilepsy (TLE) patients. Electrophysiological recordings were used to measure the role of Nwd1 in regulating synaptic transmission and neuronal hyperexcitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed, and seizure-induced pathological changes were evaluated in a KA-induced seizure model in vivo. GluN2B expression was measured and its correlation with Tyr1472-GluN2B phosphorylation was analyzed in primary hippocampal neurons. We demonstrated high protein levels of Nwd1 in brain tissues obtained from mice with acute seizures and TLE patients. Silencing Nwd1 in mice using an adeno-associated virus (AAV) profoundly suppressed neuronal hyperexcitability and the occurrence of acute seizures, which may have been caused by reducing GluN2B-containing NMDA receptor-dependent glutamatergic synaptic transmission. Moreover, the decreased activation of Nwd1 reduced GluN2B expression and the phosphorylation of the GluN2B subunit at Tyr1472. Here, we report a previously unrecognized but important role of Nwd1 in seizure models in vitro and in vivo, i.e., modulating the phosphorylation of the GluN2B subunit at Tyr1472 and regulating neuronal hyperexcitability. Meanwhile, our findings may provide a therapeutic strategy for the treatment of epilepsy or other hyperexcitability-related neurological disorders. The funders have not participated in the study design, data collection, data analysis, interpretation, or writing of the report.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31474551</pmid><doi>10.1016/j.ebiom.2019.08.050</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3882-6540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-3964
ispartof EBioMedicine, 2019-09, Vol.47, p.470-483
issn 2352-3964
2352-3964
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6796588
source ScienceDirect; PubMed Central
subjects Animals
Cognition
Evoked Potentials - drug effects
GluN2B phosphorylation
Hippocampus
Hippocampus - metabolism
Humans
Intracellular Signaling Peptides and Proteins - antagonists & inhibitors
Intracellular Signaling Peptides and Proteins - metabolism
Kainic Acid - adverse effects
Mice
NACHT and WD repeat domain-containing protein 1
Neuronal hyperexcitability
Neuronal synaptic transmission
Neurons - drug effects
Neurons - metabolism
NMDA receptor
Phosphorylation
Receptors, N-Methyl-D-Aspartate - metabolism
Research paper
Seizures - etiology
Seizures - metabolism
Seizures - physiopathology
Synapses - genetics
Synapses - metabolism
Synaptic Transmission
title Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Nwd1%20activity%20attenuates%20neuronal%20hyperexcitability%20and%20GluN2B%20phosphorylation%20in%20the%20hippocampus&rft.jtitle=EBioMedicine&rft.au=Yang,%20Qin&rft.date=2019-09-01&rft.volume=47&rft.spage=470&rft.epage=483&rft.pages=470-483&rft.issn=2352-3964&rft.eissn=2352-3964&rft_id=info:doi/10.1016/j.ebiom.2019.08.050&rft_dat=%3Cproquest_pubme%3E2283345645%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-74bad3fe51e81317cee8e005228dfe8346feb1741d6b1d16e8d607fccba8a1da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2283345645&rft_id=info:pmid/31474551&rfr_iscdi=true