Loading…

Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation

The skeletal muscle system has evolved to maintain body posture against a constant gravitational load. Mammalian target of rapamycin (mTOR) regulates the mechanically induced increase in the skeletal muscle mass. In the present study, we investigated mTOR pathway in C2C12 myoblasts in a model of mec...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-10, Vol.9 (1), p.14910-13, Article 14910
Main Authors: Baek, Mi-Ock, Ahn, Chi Bum, Cho, Hye-Jeong, Choi, Ji-Young, Son, Kuk Hui, Yoon, Mee-Sup
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-6a3b570cb1641904d2bcd867c66e2b86f21d4035e83c35099872bf7e20ba453
cites cdi_FETCH-LOGICAL-c474t-6a3b570cb1641904d2bcd867c66e2b86f21d4035e83c35099872bf7e20ba453
container_end_page 13
container_issue 1
container_start_page 14910
container_title Scientific reports
container_volume 9
creator Baek, Mi-Ock
Ahn, Chi Bum
Cho, Hye-Jeong
Choi, Ji-Young
Son, Kuk Hui
Yoon, Mee-Sup
description The skeletal muscle system has evolved to maintain body posture against a constant gravitational load. Mammalian target of rapamycin (mTOR) regulates the mechanically induced increase in the skeletal muscle mass. In the present study, we investigated mTOR pathway in C2C12 myoblasts in a model of mechanical unloading by creating a simulated microgravity (SM) using 3 D clinorotation. SM decreased the phosphorylation of Akt at Ser 473, which was mediated by mTOR complex 2 (mTORC2), in C2C12 myoblasts, leading to a decrease in the cell growth rate. Subsequently, SM inhibited C2C12 myogenesis in an Akt-dependent manner. In addition, SM increased the phospholipase D (PLD) activity by enhancing PLD2 expression, resulting in the dissociation of mSIN1 from the mTORC2, followed by decrease in the phosphorylation of Akt at Ser 473, and FOXO1 at Ser 256 in C2C12 myoblasts. Exposure to SM decreased the autophagic flux of C2C12 myoblasts by regulation of mRNA level of autophagic genes in a PLD2 and FOXO1-dependent manner, subsequently, resulting in a decrease in the C2C12 myogenesis. In conclusion, by analyzing the molecular signature of C2C12 myogenesis using SM, we suggest that the regulatory axis of the PLD2 induced Akt/FOXO1, is critical for C2C12 myogenesis.
doi_str_mv 10.1038/s41598-019-51410-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6797799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306484319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6a3b570cb1641904d2bcd867c66e2b86f21d4035e83c35099872bf7e20ba453</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVtQ_4EIGXI8mN5lkshFKfUKhi7pwF5KZdJramanJTKH_3tTW18ZAyIV77ncPOQhdEHxNMM1vAiOZzFNMZJoRRnAqDtAJYJalQAEOf9UDdB7CAseTgWREHqMBJRwY5OIEmamr-6XubJnUrvBt5fXadZvENXNnXBeSEYwIJPWmrWxjgwvJ2ulkNW9DvEu30sEmd5C6puyLyBi-dTcPk9cJSbyttlzXNmfoaKaXwZ7v31M0fbh_GT2l48nj82g4TgsmWJdyTU0mcGEIjyYxK8EUZc5FwbkFk_MZkJJhmtmcFjTDUuYCzExYwEazjJ6i2x111ZvaloVtOq-XauVdrf1Gtdqpv53GzVXVrhUXUggpI-BqD_Dte29DpxZt75voWAHFnOWMkq0Kdqr4VyF4O_veQLDaBqN2wagYjPoMRok4dPnb2_fIVwxRQHeCEFtNZf3P7n-wH2wjmUI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306484319</pqid></control><display><type>article</type><title>Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Baek, Mi-Ock ; Ahn, Chi Bum ; Cho, Hye-Jeong ; Choi, Ji-Young ; Son, Kuk Hui ; Yoon, Mee-Sup</creator><creatorcontrib>Baek, Mi-Ock ; Ahn, Chi Bum ; Cho, Hye-Jeong ; Choi, Ji-Young ; Son, Kuk Hui ; Yoon, Mee-Sup</creatorcontrib><description>The skeletal muscle system has evolved to maintain body posture against a constant gravitational load. Mammalian target of rapamycin (mTOR) regulates the mechanically induced increase in the skeletal muscle mass. In the present study, we investigated mTOR pathway in C2C12 myoblasts in a model of mechanical unloading by creating a simulated microgravity (SM) using 3 D clinorotation. SM decreased the phosphorylation of Akt at Ser 473, which was mediated by mTOR complex 2 (mTORC2), in C2C12 myoblasts, leading to a decrease in the cell growth rate. Subsequently, SM inhibited C2C12 myogenesis in an Akt-dependent manner. In addition, SM increased the phospholipase D (PLD) activity by enhancing PLD2 expression, resulting in the dissociation of mSIN1 from the mTORC2, followed by decrease in the phosphorylation of Akt at Ser 473, and FOXO1 at Ser 256 in C2C12 myoblasts. Exposure to SM decreased the autophagic flux of C2C12 myoblasts by regulation of mRNA level of autophagic genes in a PLD2 and FOXO1-dependent manner, subsequently, resulting in a decrease in the C2C12 myogenesis. In conclusion, by analyzing the molecular signature of C2C12 myogenesis using SM, we suggest that the regulatory axis of the PLD2 induced Akt/FOXO1, is critical for C2C12 myogenesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-51410-7</identifier><identifier>PMID: 31624287</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/89 ; 13/95 ; 14 ; 14/63 ; 631/136/142 ; 631/80/83/2359 ; 704/172/4081 ; 82 ; 96 ; 96/1 ; AKT protein ; Animals ; Cell Culture Techniques - methods ; Cell Differentiation - physiology ; Cell Line ; Forkhead Box Protein O1 - metabolism ; FOXO1 protein ; Gravity ; Growth rate ; Humanities and Social Sciences ; Mechanical unloading ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Mice ; Microgravity ; mRNA ; multidisciplinary ; Muscle Development - physiology ; Musculoskeletal system ; Myoblasts ; Myoblasts - physiology ; Myogenesis ; Phospholipase D ; Phospholipase D - metabolism ; Phospholipase D2 ; Phosphorylation ; Posture ; Proto-Oncogene Proteins c-akt - metabolism ; Rapamycin ; Science ; Science (multidisciplinary) ; Signal Transduction - physiology ; Skeletal muscle ; TOR protein ; Weightlessness Simulation - adverse effects ; Weightlessness Simulation - methods</subject><ispartof>Scientific reports, 2019-10, Vol.9 (1), p.14910-13, Article 14910</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6a3b570cb1641904d2bcd867c66e2b86f21d4035e83c35099872bf7e20ba453</citedby><cites>FETCH-LOGICAL-c474t-6a3b570cb1641904d2bcd867c66e2b86f21d4035e83c35099872bf7e20ba453</cites><orcidid>0000-0002-0114-1142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2306484319/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2306484319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31624287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baek, Mi-Ock</creatorcontrib><creatorcontrib>Ahn, Chi Bum</creatorcontrib><creatorcontrib>Cho, Hye-Jeong</creatorcontrib><creatorcontrib>Choi, Ji-Young</creatorcontrib><creatorcontrib>Son, Kuk Hui</creatorcontrib><creatorcontrib>Yoon, Mee-Sup</creatorcontrib><title>Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The skeletal muscle system has evolved to maintain body posture against a constant gravitational load. Mammalian target of rapamycin (mTOR) regulates the mechanically induced increase in the skeletal muscle mass. In the present study, we investigated mTOR pathway in C2C12 myoblasts in a model of mechanical unloading by creating a simulated microgravity (SM) using 3 D clinorotation. SM decreased the phosphorylation of Akt at Ser 473, which was mediated by mTOR complex 2 (mTORC2), in C2C12 myoblasts, leading to a decrease in the cell growth rate. Subsequently, SM inhibited C2C12 myogenesis in an Akt-dependent manner. In addition, SM increased the phospholipase D (PLD) activity by enhancing PLD2 expression, resulting in the dissociation of mSIN1 from the mTORC2, followed by decrease in the phosphorylation of Akt at Ser 473, and FOXO1 at Ser 256 in C2C12 myoblasts. Exposure to SM decreased the autophagic flux of C2C12 myoblasts by regulation of mRNA level of autophagic genes in a PLD2 and FOXO1-dependent manner, subsequently, resulting in a decrease in the C2C12 myogenesis. In conclusion, by analyzing the molecular signature of C2C12 myogenesis using SM, we suggest that the regulatory axis of the PLD2 induced Akt/FOXO1, is critical for C2C12 myogenesis.</description><subject>13</subject><subject>13/106</subject><subject>13/89</subject><subject>13/95</subject><subject>14</subject><subject>14/63</subject><subject>631/136/142</subject><subject>631/80/83/2359</subject><subject>704/172/4081</subject><subject>82</subject><subject>96</subject><subject>96/1</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Forkhead Box Protein O1 - metabolism</subject><subject>FOXO1 protein</subject><subject>Gravity</subject><subject>Growth rate</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical unloading</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Mice</subject><subject>Microgravity</subject><subject>mRNA</subject><subject>multidisciplinary</subject><subject>Muscle Development - physiology</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myoblasts - physiology</subject><subject>Myogenesis</subject><subject>Phospholipase D</subject><subject>Phospholipase D - metabolism</subject><subject>Phospholipase D2</subject><subject>Phosphorylation</subject><subject>Posture</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rapamycin</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - physiology</subject><subject>Skeletal muscle</subject><subject>TOR protein</subject><subject>Weightlessness Simulation - adverse effects</subject><subject>Weightlessness Simulation - methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtLAzEUhYMoVtQ_4EIGXI8mN5lkshFKfUKhi7pwF5KZdJramanJTKH_3tTW18ZAyIV77ncPOQhdEHxNMM1vAiOZzFNMZJoRRnAqDtAJYJalQAEOf9UDdB7CAseTgWREHqMBJRwY5OIEmamr-6XubJnUrvBt5fXadZvENXNnXBeSEYwIJPWmrWxjgwvJ2ulkNW9DvEu30sEmd5C6puyLyBi-dTcPk9cJSbyttlzXNmfoaKaXwZ7v31M0fbh_GT2l48nj82g4TgsmWJdyTU0mcGEIjyYxK8EUZc5FwbkFk_MZkJJhmtmcFjTDUuYCzExYwEazjJ6i2x111ZvaloVtOq-XauVdrf1Gtdqpv53GzVXVrhUXUggpI-BqD_Dte29DpxZt75voWAHFnOWMkq0Kdqr4VyF4O_veQLDaBqN2wagYjPoMRok4dPnb2_fIVwxRQHeCEFtNZf3P7n-wH2wjmUI</recordid><startdate>20191017</startdate><enddate>20191017</enddate><creator>Baek, Mi-Ock</creator><creator>Ahn, Chi Bum</creator><creator>Cho, Hye-Jeong</creator><creator>Choi, Ji-Young</creator><creator>Son, Kuk Hui</creator><creator>Yoon, Mee-Sup</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0114-1142</orcidid></search><sort><creationdate>20191017</creationdate><title>Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation</title><author>Baek, Mi-Ock ; Ahn, Chi Bum ; Cho, Hye-Jeong ; Choi, Ji-Young ; Son, Kuk Hui ; Yoon, Mee-Sup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6a3b570cb1641904d2bcd867c66e2b86f21d4035e83c35099872bf7e20ba453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/106</topic><topic>13/89</topic><topic>13/95</topic><topic>14</topic><topic>14/63</topic><topic>631/136/142</topic><topic>631/80/83/2359</topic><topic>704/172/4081</topic><topic>82</topic><topic>96</topic><topic>96/1</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Forkhead Box Protein O1 - metabolism</topic><topic>FOXO1 protein</topic><topic>Gravity</topic><topic>Growth rate</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical unloading</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Mice</topic><topic>Microgravity</topic><topic>mRNA</topic><topic>multidisciplinary</topic><topic>Muscle Development - physiology</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myoblasts - physiology</topic><topic>Myogenesis</topic><topic>Phospholipase D</topic><topic>Phospholipase D - metabolism</topic><topic>Phospholipase D2</topic><topic>Phosphorylation</topic><topic>Posture</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rapamycin</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - physiology</topic><topic>Skeletal muscle</topic><topic>TOR protein</topic><topic>Weightlessness Simulation - adverse effects</topic><topic>Weightlessness Simulation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Mi-Ock</creatorcontrib><creatorcontrib>Ahn, Chi Bum</creatorcontrib><creatorcontrib>Cho, Hye-Jeong</creatorcontrib><creatorcontrib>Choi, Ji-Young</creatorcontrib><creatorcontrib>Son, Kuk Hui</creatorcontrib><creatorcontrib>Yoon, Mee-Sup</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Mi-Ock</au><au>Ahn, Chi Bum</au><au>Cho, Hye-Jeong</au><au>Choi, Ji-Young</au><au>Son, Kuk Hui</au><au>Yoon, Mee-Sup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-10-17</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>14910</spage><epage>13</epage><pages>14910-13</pages><artnum>14910</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The skeletal muscle system has evolved to maintain body posture against a constant gravitational load. Mammalian target of rapamycin (mTOR) regulates the mechanically induced increase in the skeletal muscle mass. In the present study, we investigated mTOR pathway in C2C12 myoblasts in a model of mechanical unloading by creating a simulated microgravity (SM) using 3 D clinorotation. SM decreased the phosphorylation of Akt at Ser 473, which was mediated by mTOR complex 2 (mTORC2), in C2C12 myoblasts, leading to a decrease in the cell growth rate. Subsequently, SM inhibited C2C12 myogenesis in an Akt-dependent manner. In addition, SM increased the phospholipase D (PLD) activity by enhancing PLD2 expression, resulting in the dissociation of mSIN1 from the mTORC2, followed by decrease in the phosphorylation of Akt at Ser 473, and FOXO1 at Ser 256 in C2C12 myoblasts. Exposure to SM decreased the autophagic flux of C2C12 myoblasts by regulation of mRNA level of autophagic genes in a PLD2 and FOXO1-dependent manner, subsequently, resulting in a decrease in the C2C12 myogenesis. In conclusion, by analyzing the molecular signature of C2C12 myogenesis using SM, we suggest that the regulatory axis of the PLD2 induced Akt/FOXO1, is critical for C2C12 myogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31624287</pmid><doi>10.1038/s41598-019-51410-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0114-1142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-10, Vol.9 (1), p.14910-13, Article 14910
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6797799
source Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
13/106
13/89
13/95
14
14/63
631/136/142
631/80/83/2359
704/172/4081
82
96
96/1
AKT protein
Animals
Cell Culture Techniques - methods
Cell Differentiation - physiology
Cell Line
Forkhead Box Protein O1 - metabolism
FOXO1 protein
Gravity
Growth rate
Humanities and Social Sciences
Mechanical unloading
Mechanistic Target of Rapamycin Complex 2 - metabolism
Mice
Microgravity
mRNA
multidisciplinary
Muscle Development - physiology
Musculoskeletal system
Myoblasts
Myoblasts - physiology
Myogenesis
Phospholipase D
Phospholipase D - metabolism
Phospholipase D2
Phosphorylation
Posture
Proto-Oncogene Proteins c-akt - metabolism
Rapamycin
Science
Science (multidisciplinary)
Signal Transduction - physiology
Skeletal muscle
TOR protein
Weightlessness Simulation - adverse effects
Weightlessness Simulation - methods
title Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T08%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20microgravity%20inhibits%20C2C12%20myogenesis%20via%20phospholipase%20D2-induced%20Akt/FOXO1%20regulation&rft.jtitle=Scientific%20reports&rft.au=Baek,%20Mi-Ock&rft.date=2019-10-17&rft.volume=9&rft.issue=1&rft.spage=14910&rft.epage=13&rft.pages=14910-13&rft.artnum=14910&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-51410-7&rft_dat=%3Cproquest_pubme%3E2306484319%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-6a3b570cb1641904d2bcd867c66e2b86f21d4035e83c35099872bf7e20ba453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306484319&rft_id=info:pmid/31624287&rfr_iscdi=true