Loading…
Overdispersion models for correlated multinomial data: Applications to blinding assessment
Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation...
Saved in:
Published in: | Statistics in medicine 2019-11, Vol.38 (25), p.4963-4976 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33 |
container_end_page | 4976 |
container_issue | 25 |
container_start_page | 4963 |
container_title | Statistics in medicine |
container_volume | 38 |
creator | Landsman, V. Landsman, D. Li, C.S. Bang, H. |
description | Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis. |
doi_str_mv | 10.1002/sim.8344 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281840520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</originalsourceid><addsrcrecordid>eNp1kUFPFjEQhhujkU808ReYJl64LE6n3W0_DiaEoJBAOMDJS9Pdzocl3e3S7kL49yyCoCae5jDPPDOTl7GPAnYFAH4pod81UqlXbCVgrSvA2rxmK0Ctq0aLeou9K-UKQIga9Vu2JYVqoNF6xX6c3VD2oYyUS0gD75OnWPgmZd6lnCm6iTzv5ziFIfXBRe7d5Pb4_jjG0LlpmSl8SryNYfBhuOSuFCqlp2F6z95sXCz04alus4tvhxcHR9XJ2ffjg_2TqlPSqKqD2glc-04pjwa1F0Ct8OCUJFcTatc0NeBaGAMGPbVrIbBtybROiY2U2-zro3ac2558t2zOLtoxh97lO5tcsH93hvDTXqYb2xgAbXAR7DwJcrqeqUy2D6WjGN1AaS4W0QijoEZY0M__oFdpzsPynUUJtUYpwbwIu5xKybR5PkaAfcjLLnnZh7wW9NOfxz-DvwNagOoRuA2R7v4rsufHp7-E9yfPoHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305723308</pqid></control><display><type>article</type><title>Overdispersion models for correlated multinomial data: Applications to blinding assessment</title><source>Wiley</source><creator>Landsman, V. ; Landsman, D. ; Li, C.S. ; Bang, H.</creator><creatorcontrib>Landsman, V. ; Landsman, D. ; Li, C.S. ; Bang, H.</creatorcontrib><description>Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8344</identifier><identifier>PMID: 31460677</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biometry ; blinding index ; Cluster Analysis ; Computer Simulation ; Dirichlet‐multinomial ; GEE ; Humans ; Likelihood Functions ; Medical research ; Mental Disorders - therapy ; Meta-analysis ; Meta-Analysis as Topic ; Models, Statistical ; Neck Pain - therapy ; Randomized Controlled Trials as Topic - statistics & numerical data ; Research Design</subject><ispartof>Statistics in medicine, 2019-11, Vol.38 (25), p.4963-4976</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</citedby><cites>FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</cites><orcidid>0000-0001-5238-3857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31460677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Landsman, V.</creatorcontrib><creatorcontrib>Landsman, D.</creatorcontrib><creatorcontrib>Li, C.S.</creatorcontrib><creatorcontrib>Bang, H.</creatorcontrib><title>Overdispersion models for correlated multinomial data: Applications to blinding assessment</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis.</description><subject>Biometry</subject><subject>blinding index</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Dirichlet‐multinomial</subject><subject>GEE</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Medical research</subject><subject>Mental Disorders - therapy</subject><subject>Meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Statistical</subject><subject>Neck Pain - therapy</subject><subject>Randomized Controlled Trials as Topic - statistics & numerical data</subject><subject>Research Design</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFPFjEQhhujkU808ReYJl64LE6n3W0_DiaEoJBAOMDJS9Pdzocl3e3S7kL49yyCoCae5jDPPDOTl7GPAnYFAH4pod81UqlXbCVgrSvA2rxmK0Ctq0aLeou9K-UKQIga9Vu2JYVqoNF6xX6c3VD2oYyUS0gD75OnWPgmZd6lnCm6iTzv5ziFIfXBRe7d5Pb4_jjG0LlpmSl8SryNYfBhuOSuFCqlp2F6z95sXCz04alus4tvhxcHR9XJ2ffjg_2TqlPSqKqD2glc-04pjwa1F0Ct8OCUJFcTatc0NeBaGAMGPbVrIbBtybROiY2U2-zro3ac2558t2zOLtoxh97lO5tcsH93hvDTXqYb2xgAbXAR7DwJcrqeqUy2D6WjGN1AaS4W0QijoEZY0M__oFdpzsPynUUJtUYpwbwIu5xKybR5PkaAfcjLLnnZh7wW9NOfxz-DvwNagOoRuA2R7v4rsufHp7-E9yfPoHw</recordid><startdate>20191110</startdate><enddate>20191110</enddate><creator>Landsman, V.</creator><creator>Landsman, D.</creator><creator>Li, C.S.</creator><creator>Bang, H.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5238-3857</orcidid></search><sort><creationdate>20191110</creationdate><title>Overdispersion models for correlated multinomial data: Applications to blinding assessment</title><author>Landsman, V. ; Landsman, D. ; Li, C.S. ; Bang, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biometry</topic><topic>blinding index</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Dirichlet‐multinomial</topic><topic>GEE</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Medical research</topic><topic>Mental Disorders - therapy</topic><topic>Meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Statistical</topic><topic>Neck Pain - therapy</topic><topic>Randomized Controlled Trials as Topic - statistics & numerical data</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landsman, V.</creatorcontrib><creatorcontrib>Landsman, D.</creatorcontrib><creatorcontrib>Li, C.S.</creatorcontrib><creatorcontrib>Bang, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landsman, V.</au><au>Landsman, D.</au><au>Li, C.S.</au><au>Bang, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overdispersion models for correlated multinomial data: Applications to blinding assessment</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2019-11-10</date><risdate>2019</risdate><volume>38</volume><issue>25</issue><spage>4963</spage><epage>4976</epage><pages>4963-4976</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31460677</pmid><doi>10.1002/sim.8344</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5238-3857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2019-11, Vol.38 (25), p.4963-4976 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800782 |
source | Wiley |
subjects | Biometry blinding index Cluster Analysis Computer Simulation Dirichlet‐multinomial GEE Humans Likelihood Functions Medical research Mental Disorders - therapy Meta-analysis Meta-Analysis as Topic Models, Statistical Neck Pain - therapy Randomized Controlled Trials as Topic - statistics & numerical data Research Design |
title | Overdispersion models for correlated multinomial data: Applications to blinding assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overdispersion%20models%20for%20correlated%20multinomial%20data:%20Applications%20to%20blinding%20assessment&rft.jtitle=Statistics%20in%20medicine&rft.au=Landsman,%20V.&rft.date=2019-11-10&rft.volume=38&rft.issue=25&rft.spage=4963&rft.epage=4976&rft.pages=4963-4976&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8344&rft_dat=%3Cproquest_pubme%3E2281840520%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305723308&rft_id=info:pmid/31460677&rfr_iscdi=true |