Loading…

Overdispersion models for correlated multinomial data: Applications to blinding assessment

Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2019-11, Vol.38 (25), p.4963-4976
Main Authors: Landsman, V., Landsman, D., Li, C.S., Bang, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33
cites cdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33
container_end_page 4976
container_issue 25
container_start_page 4963
container_title Statistics in medicine
container_volume 38
creator Landsman, V.
Landsman, D.
Li, C.S.
Bang, H.
description Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis.
doi_str_mv 10.1002/sim.8344
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281840520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</originalsourceid><addsrcrecordid>eNp1kUFPFjEQhhujkU808ReYJl64LE6n3W0_DiaEoJBAOMDJS9Pdzocl3e3S7kL49yyCoCae5jDPPDOTl7GPAnYFAH4pod81UqlXbCVgrSvA2rxmK0Ctq0aLeou9K-UKQIga9Vu2JYVqoNF6xX6c3VD2oYyUS0gD75OnWPgmZd6lnCm6iTzv5ziFIfXBRe7d5Pb4_jjG0LlpmSl8SryNYfBhuOSuFCqlp2F6z95sXCz04alus4tvhxcHR9XJ2ffjg_2TqlPSqKqD2glc-04pjwa1F0Ct8OCUJFcTatc0NeBaGAMGPbVrIbBtybROiY2U2-zro3ac2558t2zOLtoxh97lO5tcsH93hvDTXqYb2xgAbXAR7DwJcrqeqUy2D6WjGN1AaS4W0QijoEZY0M__oFdpzsPynUUJtUYpwbwIu5xKybR5PkaAfcjLLnnZh7wW9NOfxz-DvwNagOoRuA2R7v4rsufHp7-E9yfPoHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305723308</pqid></control><display><type>article</type><title>Overdispersion models for correlated multinomial data: Applications to blinding assessment</title><source>Wiley</source><creator>Landsman, V. ; Landsman, D. ; Li, C.S. ; Bang, H.</creator><creatorcontrib>Landsman, V. ; Landsman, D. ; Li, C.S. ; Bang, H.</creatorcontrib><description>Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8344</identifier><identifier>PMID: 31460677</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biometry ; blinding index ; Cluster Analysis ; Computer Simulation ; Dirichlet‐multinomial ; GEE ; Humans ; Likelihood Functions ; Medical research ; Mental Disorders - therapy ; Meta-analysis ; Meta-Analysis as Topic ; Models, Statistical ; Neck Pain - therapy ; Randomized Controlled Trials as Topic - statistics &amp; numerical data ; Research Design</subject><ispartof>Statistics in medicine, 2019-11, Vol.38 (25), p.4963-4976</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</citedby><cites>FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</cites><orcidid>0000-0001-5238-3857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31460677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Landsman, V.</creatorcontrib><creatorcontrib>Landsman, D.</creatorcontrib><creatorcontrib>Li, C.S.</creatorcontrib><creatorcontrib>Bang, H.</creatorcontrib><title>Overdispersion models for correlated multinomial data: Applications to blinding assessment</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis.</description><subject>Biometry</subject><subject>blinding index</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Dirichlet‐multinomial</subject><subject>GEE</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Medical research</subject><subject>Mental Disorders - therapy</subject><subject>Meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Statistical</subject><subject>Neck Pain - therapy</subject><subject>Randomized Controlled Trials as Topic - statistics &amp; numerical data</subject><subject>Research Design</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFPFjEQhhujkU808ReYJl64LE6n3W0_DiaEoJBAOMDJS9Pdzocl3e3S7kL49yyCoCae5jDPPDOTl7GPAnYFAH4pod81UqlXbCVgrSvA2rxmK0Ctq0aLeou9K-UKQIga9Vu2JYVqoNF6xX6c3VD2oYyUS0gD75OnWPgmZd6lnCm6iTzv5ziFIfXBRe7d5Pb4_jjG0LlpmSl8SryNYfBhuOSuFCqlp2F6z95sXCz04alus4tvhxcHR9XJ2ffjg_2TqlPSqKqD2glc-04pjwa1F0Ct8OCUJFcTatc0NeBaGAMGPbVrIbBtybROiY2U2-zro3ac2558t2zOLtoxh97lO5tcsH93hvDTXqYb2xgAbXAR7DwJcrqeqUy2D6WjGN1AaS4W0QijoEZY0M__oFdpzsPynUUJtUYpwbwIu5xKybR5PkaAfcjLLnnZh7wW9NOfxz-DvwNagOoRuA2R7v4rsufHp7-E9yfPoHw</recordid><startdate>20191110</startdate><enddate>20191110</enddate><creator>Landsman, V.</creator><creator>Landsman, D.</creator><creator>Li, C.S.</creator><creator>Bang, H.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5238-3857</orcidid></search><sort><creationdate>20191110</creationdate><title>Overdispersion models for correlated multinomial data: Applications to blinding assessment</title><author>Landsman, V. ; Landsman, D. ; Li, C.S. ; Bang, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biometry</topic><topic>blinding index</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Dirichlet‐multinomial</topic><topic>GEE</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Medical research</topic><topic>Mental Disorders - therapy</topic><topic>Meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Statistical</topic><topic>Neck Pain - therapy</topic><topic>Randomized Controlled Trials as Topic - statistics &amp; numerical data</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landsman, V.</creatorcontrib><creatorcontrib>Landsman, D.</creatorcontrib><creatorcontrib>Li, C.S.</creatorcontrib><creatorcontrib>Bang, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landsman, V.</au><au>Landsman, D.</au><au>Li, C.S.</au><au>Bang, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overdispersion models for correlated multinomial data: Applications to blinding assessment</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2019-11-10</date><risdate>2019</risdate><volume>38</volume><issue>25</issue><spage>4963</spage><epage>4976</epage><pages>4963-4976</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Overdispersion models have been extensively studied for correlated normal and binomial data but much less so for correlated multinomial data. In this work, we describe a multinomial overdispersion model that leads to the specification of the first two moments of the outcome and allows the estimation of the global parameters using generalized estimating equations (GEE). We introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE method to its estimation from (1) a clinical trial with clustering by practitioner and (2) a meta‐analysis on psychiatric disorders. We examine the impact of a small number of clusters, high variability in cluster sizes, and the magnitude of the intraclass correlation on the performance of the GEE estimators of the Global Blinding Index using the data simulated from different models. We compare these estimators with the inverse‐variance weighted estimators and a maximum‐likelihood estimator, derived under the Dirichlet‐multinomial model. Our results indicate that the performance of the GEE estimators was satisfactory even in situations with a small number of clusters, whereas the inverse‐variance weighted estimators performed poorly, especially for larger values of the intraclass correlation coefficient. Our findings and illustrations may be instrumental for practitioners who analyze clustered multinomial data from clinical trials and/or meta‐analysis.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31460677</pmid><doi>10.1002/sim.8344</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5238-3857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2019-11, Vol.38 (25), p.4963-4976
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800782
source Wiley
subjects Biometry
blinding index
Cluster Analysis
Computer Simulation
Dirichlet‐multinomial
GEE
Humans
Likelihood Functions
Medical research
Mental Disorders - therapy
Meta-analysis
Meta-Analysis as Topic
Models, Statistical
Neck Pain - therapy
Randomized Controlled Trials as Topic - statistics & numerical data
Research Design
title Overdispersion models for correlated multinomial data: Applications to blinding assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overdispersion%20models%20for%20correlated%20multinomial%20data:%20Applications%20to%20blinding%20assessment&rft.jtitle=Statistics%20in%20medicine&rft.au=Landsman,%20V.&rft.date=2019-11-10&rft.volume=38&rft.issue=25&rft.spage=4963&rft.epage=4976&rft.pages=4963-4976&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8344&rft_dat=%3Cproquest_pubme%3E2281840520%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4384-c05a129dc44d2827d10eb1d0a43ea5e27a665029188082deb9112bbe8ba41f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305723308&rft_id=info:pmid/31460677&rfr_iscdi=true