Loading…
Drug-induced PD-L1 expression and cell stress response in breast cancer cells can be balanced by drug combination
The impact of chemotherapy on tumor-immune system interaction can be either beneficial or harmful, which is represented by the immunogenic cell death (ICD) paradigm or overexpression of the immunosuppressive protein – programmed death ligand 1 (PD-L1). In this study we explore the impact of steroid...
Saved in:
Published in: | Scientific reports 2019-10, Vol.9 (1), p.15099, Article 15099 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impact of chemotherapy on tumor-immune system interaction can be either beneficial or harmful, which is represented by the immunogenic cell death (ICD) paradigm or overexpression of the immunosuppressive protein – programmed death ligand 1 (PD-L1). In this study we explore the impact of steroid receptor coactivator inhibitor, other targeted anti-cancer compounds and traditional chemotherapeutic agents on the expression of PD-L1 in four breast cancer (BC) cell lines. Our results show that these agents induce PD-L1 expression, yet the magnitude of this induction varies substantially across the different compounds. In addition, we utilized the E0771 ER + BC cells as a model to examine in greater detail the relationship between pharmacological pressure, cell stress and the induction of PD-L1. Our results imply that drug induced PD-L1 expression occurs in the broader context of cell-stress, without conferring acquired drug-resistance. Furthermore, a balance between BC cytotoxicity, induction of cell-stress and the overexpression of PD-L1 can be achieved through the selection of appropriate combinations of anti-cancer compounds. Therefore, we propose that drug combination can be employed not only for increasing the direct kill of cancer cells, but also as a strategy to minimize the activation of immunosuppressive and cancer cell pro-survival program responses during drug treatment. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-51537-7 |