Loading…
Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules
Phase separation into liquid-like compartments is an emerging property of proteins containing prion-like domains (PrLDs), yet the in vivo roles of phase separation remain poorly understood. TIA proteins contain a C-terminal PrLD, and mutations in the PrLD are associated with several diseases. Here,...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2019-10, Vol.104 (2), p.290-304.e8 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-f167dd2897d58a48ce1c66417a1793344f81a5f33711a06b03f3fd47ba864f4f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-f167dd2897d58a48ce1c66417a1793344f81a5f33711a06b03f3fd47ba864f4f3 |
container_end_page | 304.e8 |
container_issue | 2 |
container_start_page | 290 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 104 |
creator | Andrusiak, Matthew G. Sharifnia, Panid Lyu, Xiaohui Wang, Zhiping Dickey, Andrea M. Wu, Zilu Chisholm, Andrew D. Jin, Yishi |
description | Phase separation into liquid-like compartments is an emerging property of proteins containing prion-like domains (PrLDs), yet the in vivo roles of phase separation remain poorly understood. TIA proteins contain a C-terminal PrLD, and mutations in the PrLD are associated with several diseases. Here, we show that the C. elegans TIAR-2/TIA protein functions cell autonomously to inhibit axon regeneration. TIAR-2 undergoes liquid-liquid phase separation in vitro and forms granules with liquid-like properties in vivo. Axon injury induces a transient increase in TIAR-2 granule number. The PrLD is necessary and sufficient for granule formation and inhibiting regeneration. Tyrosine residues within the PrLD are important for granule formation and inhibition of regeneration. TIAR-2 is also serine phosphorylated in vivo. Non-phosphorylatable TIAR-2 variants do not form granules and are unable to inhibit axon regeneration. Our data demonstrate an in vivo function for phase-separated TIAR-2 and identify features critical for its function in axon regeneration.
[Display omitted]
•The C. elegans TIA family protein TIAR-2 is an intrinsic inhibitor of axon regeneration•TIAR-2 granules have liquid-like features in vivo and undergo LLPS in vitro•The PrLD of TIAR-2 is essential for granule formation and inhibition of regeneration•Tyr and Ser residues in the PrLD are critical for function and granule formation
Andrusiak et al. identify liquid-like granules of TIAR-2 as inhibitory for axon regeneration. Serine and tyrosine residues within the prion-like domain are essential for granule formation and function. This study provides a functional in vivo readout for a phase-separated compartment. |
doi_str_mv | 10.1016/j.neuron.2019.07.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319306026</els_id><sourcerecordid>2268574661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-f167dd2897d58a48ce1c66417a1793344f81a5f33711a06b03f3fd47ba864f4f3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qqCxbvkFVReqll6Se2PGfC9IKtXSllSoheracZAzeZm2wEwTfvoGl0PbAaSTPmzfz_CPkA9AKKIgv2yrglGKoagq6orKilL8hC6Balhy0fksWVGlRilqyQ3KU85ZS4I2Gd-SQAZOqEXJBTtbhyrd-9DEU0RWru7me4yUGTPbxsb0vNv5m8n05-F9YXKxX52VdnCUbpgHze3Lg7JDx-Kkuyc9vXy9Ov5ebH2fr09Wm7LiGsXQgZN_XSsu-UZarDqETgoO0IDVjnDsFtnGMSQBLRUuZY67nsrVKcMcdW5KTve_11O6w7zCMyQ7mOvmdTfcmWm_-7QR_ZS7jrREKmFLNbPD5ySDFmwnzaHY-dzgMNmCcsqlroRrJhYBZ-uk_6TZOKczxTM2o1Lqp55uXhO9VXYo5J3TPxwA1D4DM1uwBmQdAhkozA5rHPv4d5HnoD5GXpDh_563HZHLnMXTY-4TdaProX9_wGzjsoks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307995293</pqid></control><display><type>article</type><title>Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Andrusiak, Matthew G. ; Sharifnia, Panid ; Lyu, Xiaohui ; Wang, Zhiping ; Dickey, Andrea M. ; Wu, Zilu ; Chisholm, Andrew D. ; Jin, Yishi</creator><creatorcontrib>Andrusiak, Matthew G. ; Sharifnia, Panid ; Lyu, Xiaohui ; Wang, Zhiping ; Dickey, Andrea M. ; Wu, Zilu ; Chisholm, Andrew D. ; Jin, Yishi</creatorcontrib><description>Phase separation into liquid-like compartments is an emerging property of proteins containing prion-like domains (PrLDs), yet the in vivo roles of phase separation remain poorly understood. TIA proteins contain a C-terminal PrLD, and mutations in the PrLD are associated with several diseases. Here, we show that the C. elegans TIAR-2/TIA protein functions cell autonomously to inhibit axon regeneration. TIAR-2 undergoes liquid-liquid phase separation in vitro and forms granules with liquid-like properties in vivo. Axon injury induces a transient increase in TIAR-2 granule number. The PrLD is necessary and sufficient for granule formation and inhibiting regeneration. Tyrosine residues within the PrLD are important for granule formation and inhibition of regeneration. TIAR-2 is also serine phosphorylated in vivo. Non-phosphorylatable TIAR-2 variants do not form granules and are unable to inhibit axon regeneration. Our data demonstrate an in vivo function for phase-separated TIAR-2 and identify features critical for its function in axon regeneration.
[Display omitted]
•The C. elegans TIA family protein TIAR-2 is an intrinsic inhibitor of axon regeneration•TIAR-2 granules have liquid-like features in vivo and undergo LLPS in vitro•The PrLD of TIAR-2 is essential for granule formation and inhibition of regeneration•Tyr and Ser residues in the PrLD are critical for function and granule formation
Andrusiak et al. identify liquid-like granules of TIAR-2 as inhibitory for axon regeneration. Serine and tyrosine residues within the prion-like domain are essential for granule formation and function. This study provides a functional in vivo readout for a phase-separated compartment.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.07.004</identifier><identifier>PMID: 31378567</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; axon injury ; axon regeneration ; Axons - metabolism ; Axons - physiology ; C. elegans ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Compartmentation ; CRISPR ; Cytoplasmic Granules ; Kinases ; liquid-liquid phase separation ; LLPS ; Nerve Regeneration - physiology ; Neurons ; prion-like domain ; Protein Domains ; Proteins ; Regeneration ; RNA granule ; RNA Recognition Motif Proteins - genetics ; RNA Recognition Motif Proteins - metabolism ; RNA-binding protein ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Serine ; stress granule ; T-Cell Intracellular Antigen-1 - genetics ; T-Cell Intracellular Antigen-1 - metabolism ; TIA1 ; tiar-2 ; Tyrosine</subject><ispartof>Neuron (Cambridge, Mass.), 2019-10, Vol.104 (2), p.290-304.e8</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-f167dd2897d58a48ce1c66417a1793344f81a5f33711a06b03f3fd47ba864f4f3</citedby><cites>FETCH-LOGICAL-c491t-f167dd2897d58a48ce1c66417a1793344f81a5f33711a06b03f3fd47ba864f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31378567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrusiak, Matthew G.</creatorcontrib><creatorcontrib>Sharifnia, Panid</creatorcontrib><creatorcontrib>Lyu, Xiaohui</creatorcontrib><creatorcontrib>Wang, Zhiping</creatorcontrib><creatorcontrib>Dickey, Andrea M.</creatorcontrib><creatorcontrib>Wu, Zilu</creatorcontrib><creatorcontrib>Chisholm, Andrew D.</creatorcontrib><creatorcontrib>Jin, Yishi</creatorcontrib><title>Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Phase separation into liquid-like compartments is an emerging property of proteins containing prion-like domains (PrLDs), yet the in vivo roles of phase separation remain poorly understood. TIA proteins contain a C-terminal PrLD, and mutations in the PrLD are associated with several diseases. Here, we show that the C. elegans TIAR-2/TIA protein functions cell autonomously to inhibit axon regeneration. TIAR-2 undergoes liquid-liquid phase separation in vitro and forms granules with liquid-like properties in vivo. Axon injury induces a transient increase in TIAR-2 granule number. The PrLD is necessary and sufficient for granule formation and inhibiting regeneration. Tyrosine residues within the PrLD are important for granule formation and inhibition of regeneration. TIAR-2 is also serine phosphorylated in vivo. Non-phosphorylatable TIAR-2 variants do not form granules and are unable to inhibit axon regeneration. Our data demonstrate an in vivo function for phase-separated TIAR-2 and identify features critical for its function in axon regeneration.
[Display omitted]
•The C. elegans TIA family protein TIAR-2 is an intrinsic inhibitor of axon regeneration•TIAR-2 granules have liquid-like features in vivo and undergo LLPS in vitro•The PrLD of TIAR-2 is essential for granule formation and inhibition of regeneration•Tyr and Ser residues in the PrLD are critical for function and granule formation
Andrusiak et al. identify liquid-like granules of TIAR-2 as inhibitory for axon regeneration. Serine and tyrosine residues within the prion-like domain are essential for granule formation and function. This study provides a functional in vivo readout for a phase-separated compartment.</description><subject>Animals</subject><subject>axon injury</subject><subject>axon regeneration</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>C. elegans</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Compartmentation</subject><subject>CRISPR</subject><subject>Cytoplasmic Granules</subject><subject>Kinases</subject><subject>liquid-liquid phase separation</subject><subject>LLPS</subject><subject>Nerve Regeneration - physiology</subject><subject>Neurons</subject><subject>prion-like domain</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Regeneration</subject><subject>RNA granule</subject><subject>RNA Recognition Motif Proteins - genetics</subject><subject>RNA Recognition Motif Proteins - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Serine</subject><subject>stress granule</subject><subject>T-Cell Intracellular Antigen-1 - genetics</subject><subject>T-Cell Intracellular Antigen-1 - metabolism</subject><subject>TIA1</subject><subject>tiar-2</subject><subject>Tyrosine</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU9P3DAQxa2qqCxbvkFVReqll6Se2PGfC9IKtXSllSoheracZAzeZm2wEwTfvoGl0PbAaSTPmzfz_CPkA9AKKIgv2yrglGKoagq6orKilL8hC6Balhy0fksWVGlRilqyQ3KU85ZS4I2Gd-SQAZOqEXJBTtbhyrd-9DEU0RWru7me4yUGTPbxsb0vNv5m8n05-F9YXKxX52VdnCUbpgHze3Lg7JDx-Kkuyc9vXy9Ov5ebH2fr09Wm7LiGsXQgZN_XSsu-UZarDqETgoO0IDVjnDsFtnGMSQBLRUuZY67nsrVKcMcdW5KTve_11O6w7zCMyQ7mOvmdTfcmWm_-7QR_ZS7jrREKmFLNbPD5ySDFmwnzaHY-dzgMNmCcsqlroRrJhYBZ-uk_6TZOKczxTM2o1Lqp55uXhO9VXYo5J3TPxwA1D4DM1uwBmQdAhkozA5rHPv4d5HnoD5GXpDh_563HZHLnMXTY-4TdaProX9_wGzjsoks</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Andrusiak, Matthew G.</creator><creator>Sharifnia, Panid</creator><creator>Lyu, Xiaohui</creator><creator>Wang, Zhiping</creator><creator>Dickey, Andrea M.</creator><creator>Wu, Zilu</creator><creator>Chisholm, Andrew D.</creator><creator>Jin, Yishi</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191023</creationdate><title>Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules</title><author>Andrusiak, Matthew G. ; Sharifnia, Panid ; Lyu, Xiaohui ; Wang, Zhiping ; Dickey, Andrea M. ; Wu, Zilu ; Chisholm, Andrew D. ; Jin, Yishi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-f167dd2897d58a48ce1c66417a1793344f81a5f33711a06b03f3fd47ba864f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>axon injury</topic><topic>axon regeneration</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>C. elegans</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Compartmentation</topic><topic>CRISPR</topic><topic>Cytoplasmic Granules</topic><topic>Kinases</topic><topic>liquid-liquid phase separation</topic><topic>LLPS</topic><topic>Nerve Regeneration - physiology</topic><topic>Neurons</topic><topic>prion-like domain</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Regeneration</topic><topic>RNA granule</topic><topic>RNA Recognition Motif Proteins - genetics</topic><topic>RNA Recognition Motif Proteins - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Serine</topic><topic>stress granule</topic><topic>T-Cell Intracellular Antigen-1 - genetics</topic><topic>T-Cell Intracellular Antigen-1 - metabolism</topic><topic>TIA1</topic><topic>tiar-2</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrusiak, Matthew G.</creatorcontrib><creatorcontrib>Sharifnia, Panid</creatorcontrib><creatorcontrib>Lyu, Xiaohui</creatorcontrib><creatorcontrib>Wang, Zhiping</creatorcontrib><creatorcontrib>Dickey, Andrea M.</creatorcontrib><creatorcontrib>Wu, Zilu</creatorcontrib><creatorcontrib>Chisholm, Andrew D.</creatorcontrib><creatorcontrib>Jin, Yishi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrusiak, Matthew G.</au><au>Sharifnia, Panid</au><au>Lyu, Xiaohui</au><au>Wang, Zhiping</au><au>Dickey, Andrea M.</au><au>Wu, Zilu</au><au>Chisholm, Andrew D.</au><au>Jin, Yishi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-10-23</date><risdate>2019</risdate><volume>104</volume><issue>2</issue><spage>290</spage><epage>304.e8</epage><pages>290-304.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Phase separation into liquid-like compartments is an emerging property of proteins containing prion-like domains (PrLDs), yet the in vivo roles of phase separation remain poorly understood. TIA proteins contain a C-terminal PrLD, and mutations in the PrLD are associated with several diseases. Here, we show that the C. elegans TIAR-2/TIA protein functions cell autonomously to inhibit axon regeneration. TIAR-2 undergoes liquid-liquid phase separation in vitro and forms granules with liquid-like properties in vivo. Axon injury induces a transient increase in TIAR-2 granule number. The PrLD is necessary and sufficient for granule formation and inhibiting regeneration. Tyrosine residues within the PrLD are important for granule formation and inhibition of regeneration. TIAR-2 is also serine phosphorylated in vivo. Non-phosphorylatable TIAR-2 variants do not form granules and are unable to inhibit axon regeneration. Our data demonstrate an in vivo function for phase-separated TIAR-2 and identify features critical for its function in axon regeneration.
[Display omitted]
•The C. elegans TIA family protein TIAR-2 is an intrinsic inhibitor of axon regeneration•TIAR-2 granules have liquid-like features in vivo and undergo LLPS in vitro•The PrLD of TIAR-2 is essential for granule formation and inhibition of regeneration•Tyr and Ser residues in the PrLD are critical for function and granule formation
Andrusiak et al. identify liquid-like granules of TIAR-2 as inhibitory for axon regeneration. Serine and tyrosine residues within the prion-like domain are essential for granule formation and function. This study provides a functional in vivo readout for a phase-separated compartment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31378567</pmid><doi>10.1016/j.neuron.2019.07.004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2019-10, Vol.104 (2), p.290-304.e8 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813885 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals axon injury axon regeneration Axons - metabolism Axons - physiology C. elegans Caenorhabditis elegans Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Cell Compartmentation CRISPR Cytoplasmic Granules Kinases liquid-liquid phase separation LLPS Nerve Regeneration - physiology Neurons prion-like domain Protein Domains Proteins Regeneration RNA granule RNA Recognition Motif Proteins - genetics RNA Recognition Motif Proteins - metabolism RNA-binding protein RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Serine stress granule T-Cell Intracellular Antigen-1 - genetics T-Cell Intracellular Antigen-1 - metabolism TIA1 tiar-2 Tyrosine |
title | Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Axon%20Regeneration%20by%20Liquid-like%20TIAR-2%20Granules&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Andrusiak,%20Matthew%20G.&rft.date=2019-10-23&rft.volume=104&rft.issue=2&rft.spage=290&rft.epage=304.e8&rft.pages=290-304.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.07.004&rft_dat=%3Cproquest_pubme%3E2268574661%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-f167dd2897d58a48ce1c66417a1793344f81a5f33711a06b03f3fd47ba864f4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307995293&rft_id=info:pmid/31378567&rfr_iscdi=true |