Loading…
The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model
Introduction Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modu...
Saved in:
Published in: | Cellular and molecular bioengineering 2018-10, Vol.11 (5), p.419-433 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413 |
container_end_page | 433 |
container_issue | 5 |
container_start_page | 419 |
container_title | Cellular and molecular bioengineering |
container_volume | 11 |
creator | Saini, Harpinder Rahmani Eliato, Kiarash Silva, Casey Allam, Mayar Mouneimne, Ghassan Ros, Robert Nikkhah, Mehdi |
description | Introduction
Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs.
Methods
We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion.
Results
Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion.
Conclusion
In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells. |
doi_str_mv | 10.1007/s12195-018-0544-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314251095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEoh_wA7ggS1y4hHr8FfuCVLW0ILWq1C5ny0kmW1eJvdhJJf49Xm1ZoBKnGc08847Hb1W9A_oJKG1OMjAwsqagayqFqM2L6hC0krWknL_c50weVEc5P1CqGOXidXXAoQGjDTus4uoeyW0ckcSBnGOe4mZ02TviQk_u5hQnN5IL36bYlvqcSQzkNMy-7lzoMJHztKzJLWaf522B-EAcufZdihjWPiAm7MlqmWIi17HH8U31anBjxrdP8bj6fvFldfa1vrq5_HZ2elV3kqu51ooNQoE0AltwWjZKAGeohoa5xjnegVFSaNO0KHo39LqgWkslHDeNK-xx9Xmnu1naCfsOw5zcaDfJTy79tNF5-28n-Hu7jo9WaVAN50Xg45NAij8WzLOdfO5wHF3AuGTLOAgmgRpZ0A_P0Ie4pFDOs4xqKkApagoFO6r8Tc4Jh_1jgNqtnXZnpy122q2ddjvz_u8r9hO__SsA2wG5tMIa05_V_1f9BR7KqnM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080416609</pqid></control><display><type>article</type><title>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</title><source>PubMed Central (Open access)</source><source>Springer Link</source><creator>Saini, Harpinder ; Rahmani Eliato, Kiarash ; Silva, Casey ; Allam, Mayar ; Mouneimne, Ghassan ; Ros, Robert ; Nikkhah, Mehdi</creator><creatorcontrib>Saini, Harpinder ; Rahmani Eliato, Kiarash ; Silva, Casey ; Allam, Mayar ; Mouneimne, Ghassan ; Ros, Robert ; Nikkhah, Mehdi</creatorcontrib><description>Introduction
Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs.
Methods
We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion.
Results
Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion.
Conclusion
In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.</description><identifier>ISSN: 1865-5025</identifier><identifier>EISSN: 1865-5033</identifier><identifier>DOI: 10.1007/s12195-018-0544-9</identifier><identifier>PMID: 31719892</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anticancer properties ; Atomic force microscopy ; Biological and Medical Physics ; Biomaterials ; Biomechanics ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biophysics ; Breast cancer ; Cancer ; Cell Biology ; Cell proliferation ; Collagen ; Collagen (type I) ; Combinatorial analysis ; Density ; Doxorubicin ; Drug delivery ; Drug efficacy ; Drug resistance ; Drugs ; Engineering ; Fibroblasts ; Fibronectin ; Fibrosis ; Hydrogels ; Invasiveness ; Matrix protein ; Mechanical properties ; Modulus of elasticity ; Proteins ; Stiffness ; Stromal cells ; Three dimensional models ; Tumors</subject><ispartof>Cellular and molecular bioengineering, 2018-10, Vol.11 (5), p.419-433</ispartof><rights>Biomedical Engineering Society 2018</rights><rights>Biomedical Engineering Society 2018.</rights><rights>Cellular and Molecular Bioengineering is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</citedby><cites>FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</cites><orcidid>0000-0001-5970-7666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816733/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816733/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31719892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saini, Harpinder</creatorcontrib><creatorcontrib>Rahmani Eliato, Kiarash</creatorcontrib><creatorcontrib>Silva, Casey</creatorcontrib><creatorcontrib>Allam, Mayar</creatorcontrib><creatorcontrib>Mouneimne, Ghassan</creatorcontrib><creatorcontrib>Ros, Robert</creatorcontrib><creatorcontrib>Nikkhah, Mehdi</creatorcontrib><title>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</title><title>Cellular and molecular bioengineering</title><addtitle>Cel. Mol. Bioeng</addtitle><addtitle>Cell Mol Bioeng</addtitle><description>Introduction
Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs.
Methods
We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion.
Results
Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion.
Conclusion
In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.</description><subject>Anticancer properties</subject><subject>Atomic force microscopy</subject><subject>Biological and Medical Physics</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biophysics</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell proliferation</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Combinatorial analysis</subject><subject>Density</subject><subject>Doxorubicin</subject><subject>Drug delivery</subject><subject>Drug efficacy</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Engineering</subject><subject>Fibroblasts</subject><subject>Fibronectin</subject><subject>Fibrosis</subject><subject>Hydrogels</subject><subject>Invasiveness</subject><subject>Matrix protein</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Proteins</subject><subject>Stiffness</subject><subject>Stromal cells</subject><subject>Three dimensional models</subject><subject>Tumors</subject><issn>1865-5025</issn><issn>1865-5033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEoh_wA7ggS1y4hHr8FfuCVLW0ILWq1C5ny0kmW1eJvdhJJf49Xm1ZoBKnGc08847Hb1W9A_oJKG1OMjAwsqagayqFqM2L6hC0krWknL_c50weVEc5P1CqGOXidXXAoQGjDTus4uoeyW0ckcSBnGOe4mZ02TviQk_u5hQnN5IL36bYlvqcSQzkNMy-7lzoMJHztKzJLWaf522B-EAcufZdihjWPiAm7MlqmWIi17HH8U31anBjxrdP8bj6fvFldfa1vrq5_HZ2elV3kqu51ooNQoE0AltwWjZKAGeohoa5xjnegVFSaNO0KHo39LqgWkslHDeNK-xx9Xmnu1naCfsOw5zcaDfJTy79tNF5-28n-Hu7jo9WaVAN50Xg45NAij8WzLOdfO5wHF3AuGTLOAgmgRpZ0A_P0Ie4pFDOs4xqKkApagoFO6r8Tc4Jh_1jgNqtnXZnpy122q2ddjvz_u8r9hO__SsA2wG5tMIa05_V_1f9BR7KqnM</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Saini, Harpinder</creator><creator>Rahmani Eliato, Kiarash</creator><creator>Silva, Casey</creator><creator>Allam, Mayar</creator><creator>Mouneimne, Ghassan</creator><creator>Ros, Robert</creator><creator>Nikkhah, Mehdi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5970-7666</orcidid></search><sort><creationdate>20181001</creationdate><title>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</title><author>Saini, Harpinder ; Rahmani Eliato, Kiarash ; Silva, Casey ; Allam, Mayar ; Mouneimne, Ghassan ; Ros, Robert ; Nikkhah, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anticancer properties</topic><topic>Atomic force microscopy</topic><topic>Biological and Medical Physics</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biophysics</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell proliferation</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Combinatorial analysis</topic><topic>Density</topic><topic>Doxorubicin</topic><topic>Drug delivery</topic><topic>Drug efficacy</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Engineering</topic><topic>Fibroblasts</topic><topic>Fibronectin</topic><topic>Fibrosis</topic><topic>Hydrogels</topic><topic>Invasiveness</topic><topic>Matrix protein</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Proteins</topic><topic>Stiffness</topic><topic>Stromal cells</topic><topic>Three dimensional models</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saini, Harpinder</creatorcontrib><creatorcontrib>Rahmani Eliato, Kiarash</creatorcontrib><creatorcontrib>Silva, Casey</creatorcontrib><creatorcontrib>Allam, Mayar</creatorcontrib><creatorcontrib>Mouneimne, Ghassan</creatorcontrib><creatorcontrib>Ros, Robert</creatorcontrib><creatorcontrib>Nikkhah, Mehdi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saini, Harpinder</au><au>Rahmani Eliato, Kiarash</au><au>Silva, Casey</au><au>Allam, Mayar</au><au>Mouneimne, Ghassan</au><au>Ros, Robert</au><au>Nikkhah, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</atitle><jtitle>Cellular and molecular bioengineering</jtitle><stitle>Cel. Mol. Bioeng</stitle><addtitle>Cell Mol Bioeng</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>11</volume><issue>5</issue><spage>419</spage><epage>433</epage><pages>419-433</pages><issn>1865-5025</issn><eissn>1865-5033</eissn><abstract>Introduction
Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs.
Methods
We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion.
Results
Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion.
Conclusion
In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31719892</pmid><doi>10.1007/s12195-018-0544-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5970-7666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-5025 |
ispartof | Cellular and molecular bioengineering, 2018-10, Vol.11 (5), p.419-433 |
issn | 1865-5025 1865-5033 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816733 |
source | PubMed Central (Open access); Springer Link |
subjects | Anticancer properties Atomic force microscopy Biological and Medical Physics Biomaterials Biomechanics Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biophysics Breast cancer Cancer Cell Biology Cell proliferation Collagen Collagen (type I) Combinatorial analysis Density Doxorubicin Drug delivery Drug efficacy Drug resistance Drugs Engineering Fibroblasts Fibronectin Fibrosis Hydrogels Invasiveness Matrix protein Mechanical properties Modulus of elasticity Proteins Stiffness Stromal cells Three dimensional models Tumors |
title | The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Desmoplasia%20and%20Stromal%20Fibroblasts%20on%20Anti-cancer%20Drug%20Resistance%20in%20a%20Microengineered%20Tumor%20Model&rft.jtitle=Cellular%20and%20molecular%20bioengineering&rft.au=Saini,%20Harpinder&rft.date=2018-10-01&rft.volume=11&rft.issue=5&rft.spage=419&rft.epage=433&rft.pages=419-433&rft.issn=1865-5025&rft.eissn=1865-5033&rft_id=info:doi/10.1007/s12195-018-0544-9&rft_dat=%3Cproquest_pubme%3E2314251095%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080416609&rft_id=info:pmid/31719892&rfr_iscdi=true |