Loading…

The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model

Introduction Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modu...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular bioengineering 2018-10, Vol.11 (5), p.419-433
Main Authors: Saini, Harpinder, Rahmani Eliato, Kiarash, Silva, Casey, Allam, Mayar, Mouneimne, Ghassan, Ros, Robert, Nikkhah, Mehdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413
cites cdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413
container_end_page 433
container_issue 5
container_start_page 419
container_title Cellular and molecular bioengineering
container_volume 11
creator Saini, Harpinder
Rahmani Eliato, Kiarash
Silva, Casey
Allam, Mayar
Mouneimne, Ghassan
Ros, Robert
Nikkhah, Mehdi
description Introduction Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs. Methods We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion. Results Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion. Conclusion In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.
doi_str_mv 10.1007/s12195-018-0544-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314251095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEoh_wA7ggS1y4hHr8FfuCVLW0ILWq1C5ny0kmW1eJvdhJJf49Xm1ZoBKnGc08847Hb1W9A_oJKG1OMjAwsqagayqFqM2L6hC0krWknL_c50weVEc5P1CqGOXidXXAoQGjDTus4uoeyW0ckcSBnGOe4mZ02TviQk_u5hQnN5IL36bYlvqcSQzkNMy-7lzoMJHztKzJLWaf522B-EAcufZdihjWPiAm7MlqmWIi17HH8U31anBjxrdP8bj6fvFldfa1vrq5_HZ2elV3kqu51ooNQoE0AltwWjZKAGeohoa5xjnegVFSaNO0KHo39LqgWkslHDeNK-xx9Xmnu1naCfsOw5zcaDfJTy79tNF5-28n-Hu7jo9WaVAN50Xg45NAij8WzLOdfO5wHF3AuGTLOAgmgRpZ0A_P0Ie4pFDOs4xqKkApagoFO6r8Tc4Jh_1jgNqtnXZnpy122q2ddjvz_u8r9hO__SsA2wG5tMIa05_V_1f9BR7KqnM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080416609</pqid></control><display><type>article</type><title>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</title><source>PubMed Central (Open access)</source><source>Springer Link</source><creator>Saini, Harpinder ; Rahmani Eliato, Kiarash ; Silva, Casey ; Allam, Mayar ; Mouneimne, Ghassan ; Ros, Robert ; Nikkhah, Mehdi</creator><creatorcontrib>Saini, Harpinder ; Rahmani Eliato, Kiarash ; Silva, Casey ; Allam, Mayar ; Mouneimne, Ghassan ; Ros, Robert ; Nikkhah, Mehdi</creatorcontrib><description>Introduction Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs. Methods We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion. Results Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion. Conclusion In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.</description><identifier>ISSN: 1865-5025</identifier><identifier>EISSN: 1865-5033</identifier><identifier>DOI: 10.1007/s12195-018-0544-9</identifier><identifier>PMID: 31719892</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anticancer properties ; Atomic force microscopy ; Biological and Medical Physics ; Biomaterials ; Biomechanics ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biophysics ; Breast cancer ; Cancer ; Cell Biology ; Cell proliferation ; Collagen ; Collagen (type I) ; Combinatorial analysis ; Density ; Doxorubicin ; Drug delivery ; Drug efficacy ; Drug resistance ; Drugs ; Engineering ; Fibroblasts ; Fibronectin ; Fibrosis ; Hydrogels ; Invasiveness ; Matrix protein ; Mechanical properties ; Modulus of elasticity ; Proteins ; Stiffness ; Stromal cells ; Three dimensional models ; Tumors</subject><ispartof>Cellular and molecular bioengineering, 2018-10, Vol.11 (5), p.419-433</ispartof><rights>Biomedical Engineering Society 2018</rights><rights>Biomedical Engineering Society 2018.</rights><rights>Cellular and Molecular Bioengineering is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</citedby><cites>FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</cites><orcidid>0000-0001-5970-7666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816733/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816733/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31719892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saini, Harpinder</creatorcontrib><creatorcontrib>Rahmani Eliato, Kiarash</creatorcontrib><creatorcontrib>Silva, Casey</creatorcontrib><creatorcontrib>Allam, Mayar</creatorcontrib><creatorcontrib>Mouneimne, Ghassan</creatorcontrib><creatorcontrib>Ros, Robert</creatorcontrib><creatorcontrib>Nikkhah, Mehdi</creatorcontrib><title>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</title><title>Cellular and molecular bioengineering</title><addtitle>Cel. Mol. Bioeng</addtitle><addtitle>Cell Mol Bioeng</addtitle><description>Introduction Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs. Methods We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion. Results Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion. Conclusion In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.</description><subject>Anticancer properties</subject><subject>Atomic force microscopy</subject><subject>Biological and Medical Physics</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biophysics</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell proliferation</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Combinatorial analysis</subject><subject>Density</subject><subject>Doxorubicin</subject><subject>Drug delivery</subject><subject>Drug efficacy</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Engineering</subject><subject>Fibroblasts</subject><subject>Fibronectin</subject><subject>Fibrosis</subject><subject>Hydrogels</subject><subject>Invasiveness</subject><subject>Matrix protein</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Proteins</subject><subject>Stiffness</subject><subject>Stromal cells</subject><subject>Three dimensional models</subject><subject>Tumors</subject><issn>1865-5025</issn><issn>1865-5033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEoh_wA7ggS1y4hHr8FfuCVLW0ILWq1C5ny0kmW1eJvdhJJf49Xm1ZoBKnGc08847Hb1W9A_oJKG1OMjAwsqagayqFqM2L6hC0krWknL_c50weVEc5P1CqGOXidXXAoQGjDTus4uoeyW0ckcSBnGOe4mZ02TviQk_u5hQnN5IL36bYlvqcSQzkNMy-7lzoMJHztKzJLWaf522B-EAcufZdihjWPiAm7MlqmWIi17HH8U31anBjxrdP8bj6fvFldfa1vrq5_HZ2elV3kqu51ooNQoE0AltwWjZKAGeohoa5xjnegVFSaNO0KHo39LqgWkslHDeNK-xx9Xmnu1naCfsOw5zcaDfJTy79tNF5-28n-Hu7jo9WaVAN50Xg45NAij8WzLOdfO5wHF3AuGTLOAgmgRpZ0A_P0Ie4pFDOs4xqKkApagoFO6r8Tc4Jh_1jgNqtnXZnpy122q2ddjvz_u8r9hO__SsA2wG5tMIa05_V_1f9BR7KqnM</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Saini, Harpinder</creator><creator>Rahmani Eliato, Kiarash</creator><creator>Silva, Casey</creator><creator>Allam, Mayar</creator><creator>Mouneimne, Ghassan</creator><creator>Ros, Robert</creator><creator>Nikkhah, Mehdi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5970-7666</orcidid></search><sort><creationdate>20181001</creationdate><title>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</title><author>Saini, Harpinder ; Rahmani Eliato, Kiarash ; Silva, Casey ; Allam, Mayar ; Mouneimne, Ghassan ; Ros, Robert ; Nikkhah, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anticancer properties</topic><topic>Atomic force microscopy</topic><topic>Biological and Medical Physics</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biophysics</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell proliferation</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Combinatorial analysis</topic><topic>Density</topic><topic>Doxorubicin</topic><topic>Drug delivery</topic><topic>Drug efficacy</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Engineering</topic><topic>Fibroblasts</topic><topic>Fibronectin</topic><topic>Fibrosis</topic><topic>Hydrogels</topic><topic>Invasiveness</topic><topic>Matrix protein</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Proteins</topic><topic>Stiffness</topic><topic>Stromal cells</topic><topic>Three dimensional models</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saini, Harpinder</creatorcontrib><creatorcontrib>Rahmani Eliato, Kiarash</creatorcontrib><creatorcontrib>Silva, Casey</creatorcontrib><creatorcontrib>Allam, Mayar</creatorcontrib><creatorcontrib>Mouneimne, Ghassan</creatorcontrib><creatorcontrib>Ros, Robert</creatorcontrib><creatorcontrib>Nikkhah, Mehdi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saini, Harpinder</au><au>Rahmani Eliato, Kiarash</au><au>Silva, Casey</au><au>Allam, Mayar</au><au>Mouneimne, Ghassan</au><au>Ros, Robert</au><au>Nikkhah, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model</atitle><jtitle>Cellular and molecular bioengineering</jtitle><stitle>Cel. Mol. Bioeng</stitle><addtitle>Cell Mol Bioeng</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>11</volume><issue>5</issue><spage>419</spage><epage>433</epage><pages>419-433</pages><issn>1865-5025</issn><eissn>1865-5033</eissn><abstract>Introduction Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs. Methods We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion. Results Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion. Conclusion In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31719892</pmid><doi>10.1007/s12195-018-0544-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5970-7666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1865-5025
ispartof Cellular and molecular bioengineering, 2018-10, Vol.11 (5), p.419-433
issn 1865-5025
1865-5033
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816733
source PubMed Central (Open access); Springer Link
subjects Anticancer properties
Atomic force microscopy
Biological and Medical Physics
Biomaterials
Biomechanics
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biophysics
Breast cancer
Cancer
Cell Biology
Cell proliferation
Collagen
Collagen (type I)
Combinatorial analysis
Density
Doxorubicin
Drug delivery
Drug efficacy
Drug resistance
Drugs
Engineering
Fibroblasts
Fibronectin
Fibrosis
Hydrogels
Invasiveness
Matrix protein
Mechanical properties
Modulus of elasticity
Proteins
Stiffness
Stromal cells
Three dimensional models
Tumors
title The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Desmoplasia%20and%20Stromal%20Fibroblasts%20on%20Anti-cancer%20Drug%20Resistance%20in%20a%20Microengineered%20Tumor%20Model&rft.jtitle=Cellular%20and%20molecular%20bioengineering&rft.au=Saini,%20Harpinder&rft.date=2018-10-01&rft.volume=11&rft.issue=5&rft.spage=419&rft.epage=433&rft.pages=419-433&rft.issn=1865-5025&rft.eissn=1865-5033&rft_id=info:doi/10.1007/s12195-018-0544-9&rft_dat=%3Cproquest_pubme%3E2314251095%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-862f461594eb1a85764132e6f72a7aa3c19654897be4dafd815988564a397a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2080416609&rft_id=info:pmid/31719892&rfr_iscdi=true