Loading…
Control of binding of C60 molecules to the substrate by Coulomb blockade
We report on a transition in a monolayer of C 60 molecules deposited on a WO 2 /W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force an...
Saved in:
Published in: | Scientific reports 2019-11, Vol.9 (1), p.1-8, Article 16017 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific reports |
container_volume | 9 |
creator | Bozhko, Sergey I. Walshe, Killian Shvets, Igor V. |
description | We report on a transition in a monolayer of
C
60
molecules deposited on a WO
2
/W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259
K
. The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80
meV
when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the
C
60
molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface. |
doi_str_mv | 10.1038/s41598-019-52544-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6831608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312251386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaLYUvsHPAU8r06-ttmLIItaoeBFzyHJZtut201NdoX-e1Nb_Lg4lxmY99684SF0SeCaAJM3kRNRyAxIkQkqOM_4CRpT4CKjjNLTX_MITWNcQypBC06KczRiJC9glvMxmpe-64Nvsa-xabqq6Zb7scwBb3zr7NC6iHuP-5XDcTCxD7p32Oxw6YfWbww2rbdvunIX6KzWbXTTY5-g14f7l3KeLZ4fn8q7RWa5IH1WSwuzihgGUhMLROeFtZzRgs7yGdQONJcSjNWMCG5kAQZEBZJpUwkjdM0m6Pagux3MxlXWJfu6VdvQbHTYKa8b9XfTNSu19B8ql-nrpDRBV0eB4N8HF3u19kPokmdFGaFUECbzhKIHlA0-xuDq7wsE1D4AdQhApQDUVwCKJxI7kGICd0sXfqT_YX0Cz7uGmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312251386</pqid></control><display><type>article</type><title>Control of binding of C60 molecules to the substrate by Coulomb blockade</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bozhko, Sergey I. ; Walshe, Killian ; Shvets, Igor V.</creator><creatorcontrib>Bozhko, Sergey I. ; Walshe, Killian ; Shvets, Igor V.</creatorcontrib><description>We report on a transition in a monolayer of
C
60
molecules deposited on a WO
2
/W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259
K
. The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80
meV
when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the
C
60
molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-52544-4</identifier><identifier>PMID: 31690764</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/136 ; 639/766/119/544 ; 639/766/36/1122 ; 639/925/357/995 ; Electrostatic properties ; Energy ; Experiments ; Humanities and Social Sciences ; Molecular structure ; multidisciplinary ; Phase transitions ; Polarity ; Scanning tunneling microscopy ; Science ; Science (multidisciplinary) ; Temperature ; Thermodynamics</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.1-8, Article 16017</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</citedby><cites>FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2312251386/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2312251386?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Bozhko, Sergey I.</creatorcontrib><creatorcontrib>Walshe, Killian</creatorcontrib><creatorcontrib>Shvets, Igor V.</creatorcontrib><title>Control of binding of C60 molecules to the substrate by Coulomb blockade</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>We report on a transition in a monolayer of
C
60
molecules deposited on a WO
2
/W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259
K
. The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80
meV
when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the
C
60
molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface.</description><subject>142/136</subject><subject>639/766/119/544</subject><subject>639/766/36/1122</subject><subject>639/925/357/995</subject><subject>Electrostatic properties</subject><subject>Energy</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Molecular structure</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Polarity</subject><subject>Scanning tunneling microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1LAzEQDaLYUvsHPAU8r06-ttmLIItaoeBFzyHJZtut201NdoX-e1Nb_Lg4lxmY99684SF0SeCaAJM3kRNRyAxIkQkqOM_4CRpT4CKjjNLTX_MITWNcQypBC06KczRiJC9glvMxmpe-64Nvsa-xabqq6Zb7scwBb3zr7NC6iHuP-5XDcTCxD7p32Oxw6YfWbww2rbdvunIX6KzWbXTTY5-g14f7l3KeLZ4fn8q7RWa5IH1WSwuzihgGUhMLROeFtZzRgs7yGdQONJcSjNWMCG5kAQZEBZJpUwkjdM0m6Pagux3MxlXWJfu6VdvQbHTYKa8b9XfTNSu19B8ql-nrpDRBV0eB4N8HF3u19kPokmdFGaFUECbzhKIHlA0-xuDq7wsE1D4AdQhApQDUVwCKJxI7kGICd0sXfqT_YX0Cz7uGmw</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Bozhko, Sergey I.</creator><creator>Walshe, Killian</creator><creator>Shvets, Igor V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20191105</creationdate><title>Control of binding of C60 molecules to the substrate by Coulomb blockade</title><author>Bozhko, Sergey I. ; Walshe, Killian ; Shvets, Igor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>142/136</topic><topic>639/766/119/544</topic><topic>639/766/36/1122</topic><topic>639/925/357/995</topic><topic>Electrostatic properties</topic><topic>Energy</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Molecular structure</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Polarity</topic><topic>Scanning tunneling microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozhko, Sergey I.</creatorcontrib><creatorcontrib>Walshe, Killian</creatorcontrib><creatorcontrib>Shvets, Igor V.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozhko, Sergey I.</au><au>Walshe, Killian</au><au>Shvets, Igor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of binding of C60 molecules to the substrate by Coulomb blockade</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2019-11-05</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>16017</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We report on a transition in a monolayer of
C
60
molecules deposited on a WO
2
/W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259
K
. The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80
meV
when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the
C
60
molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31690764</pmid><doi>10.1038/s41598-019-52544-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-11, Vol.9 (1), p.1-8, Article 16017 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6831608 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 142/136 639/766/119/544 639/766/36/1122 639/925/357/995 Electrostatic properties Energy Experiments Humanities and Social Sciences Molecular structure multidisciplinary Phase transitions Polarity Scanning tunneling microscopy Science Science (multidisciplinary) Temperature Thermodynamics |
title | Control of binding of C60 molecules to the substrate by Coulomb blockade |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20binding%20of%20C60%20molecules%20to%20the%20substrate%20by%20Coulomb%20blockade&rft.jtitle=Scientific%20reports&rft.au=Bozhko,%20Sergey%20I.&rft.date=2019-11-05&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=16017&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-52544-4&rft_dat=%3Cproquest_pubme%3E2312251386%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312251386&rft_id=info:pmid/31690764&rfr_iscdi=true |