Loading…

Control of binding of C60 molecules to the substrate by Coulomb blockade

We report on a transition in a monolayer of C 60 molecules deposited on a WO 2 /W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force an...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-11, Vol.9 (1), p.1-8, Article 16017
Main Authors: Bozhko, Sergey I., Walshe, Killian, Shvets, Igor V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3
cites cdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3
container_end_page 8
container_issue 1
container_start_page 1
container_title Scientific reports
container_volume 9
creator Bozhko, Sergey I.
Walshe, Killian
Shvets, Igor V.
description We report on a transition in a monolayer of C 60 molecules deposited on a WO 2 /W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259  K . The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80  meV when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the C 60 molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface.
doi_str_mv 10.1038/s41598-019-52544-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6831608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312251386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaLYUvsHPAU8r06-ttmLIItaoeBFzyHJZtut201NdoX-e1Nb_Lg4lxmY99684SF0SeCaAJM3kRNRyAxIkQkqOM_4CRpT4CKjjNLTX_MITWNcQypBC06KczRiJC9glvMxmpe-64Nvsa-xabqq6Zb7scwBb3zr7NC6iHuP-5XDcTCxD7p32Oxw6YfWbww2rbdvunIX6KzWbXTTY5-g14f7l3KeLZ4fn8q7RWa5IH1WSwuzihgGUhMLROeFtZzRgs7yGdQONJcSjNWMCG5kAQZEBZJpUwkjdM0m6Pagux3MxlXWJfu6VdvQbHTYKa8b9XfTNSu19B8ql-nrpDRBV0eB4N8HF3u19kPokmdFGaFUECbzhKIHlA0-xuDq7wsE1D4AdQhApQDUVwCKJxI7kGICd0sXfqT_YX0Cz7uGmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312251386</pqid></control><display><type>article</type><title>Control of binding of C60 molecules to the substrate by Coulomb blockade</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bozhko, Sergey I. ; Walshe, Killian ; Shvets, Igor V.</creator><creatorcontrib>Bozhko, Sergey I. ; Walshe, Killian ; Shvets, Igor V.</creatorcontrib><description>We report on a transition in a monolayer of C 60 molecules deposited on a WO 2 /W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259  K . The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80  meV when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the C 60 molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-52544-4</identifier><identifier>PMID: 31690764</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/136 ; 639/766/119/544 ; 639/766/36/1122 ; 639/925/357/995 ; Electrostatic properties ; Energy ; Experiments ; Humanities and Social Sciences ; Molecular structure ; multidisciplinary ; Phase transitions ; Polarity ; Scanning tunneling microscopy ; Science ; Science (multidisciplinary) ; Temperature ; Thermodynamics</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.1-8, Article 16017</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</citedby><cites>FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2312251386/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2312251386?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Bozhko, Sergey I.</creatorcontrib><creatorcontrib>Walshe, Killian</creatorcontrib><creatorcontrib>Shvets, Igor V.</creatorcontrib><title>Control of binding of C60 molecules to the substrate by Coulomb blockade</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>We report on a transition in a monolayer of C 60 molecules deposited on a WO 2 /W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259  K . The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80  meV when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the C 60 molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface.</description><subject>142/136</subject><subject>639/766/119/544</subject><subject>639/766/36/1122</subject><subject>639/925/357/995</subject><subject>Electrostatic properties</subject><subject>Energy</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Molecular structure</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Polarity</subject><subject>Scanning tunneling microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1LAzEQDaLYUvsHPAU8r06-ttmLIItaoeBFzyHJZtut201NdoX-e1Nb_Lg4lxmY99684SF0SeCaAJM3kRNRyAxIkQkqOM_4CRpT4CKjjNLTX_MITWNcQypBC06KczRiJC9glvMxmpe-64Nvsa-xabqq6Zb7scwBb3zr7NC6iHuP-5XDcTCxD7p32Oxw6YfWbww2rbdvunIX6KzWbXTTY5-g14f7l3KeLZ4fn8q7RWa5IH1WSwuzihgGUhMLROeFtZzRgs7yGdQONJcSjNWMCG5kAQZEBZJpUwkjdM0m6Pagux3MxlXWJfu6VdvQbHTYKa8b9XfTNSu19B8ql-nrpDRBV0eB4N8HF3u19kPokmdFGaFUECbzhKIHlA0-xuDq7wsE1D4AdQhApQDUVwCKJxI7kGICd0sXfqT_YX0Cz7uGmw</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Bozhko, Sergey I.</creator><creator>Walshe, Killian</creator><creator>Shvets, Igor V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20191105</creationdate><title>Control of binding of C60 molecules to the substrate by Coulomb blockade</title><author>Bozhko, Sergey I. ; Walshe, Killian ; Shvets, Igor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>142/136</topic><topic>639/766/119/544</topic><topic>639/766/36/1122</topic><topic>639/925/357/995</topic><topic>Electrostatic properties</topic><topic>Energy</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Molecular structure</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Polarity</topic><topic>Scanning tunneling microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozhko, Sergey I.</creatorcontrib><creatorcontrib>Walshe, Killian</creatorcontrib><creatorcontrib>Shvets, Igor V.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozhko, Sergey I.</au><au>Walshe, Killian</au><au>Shvets, Igor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of binding of C60 molecules to the substrate by Coulomb blockade</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2019-11-05</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>16017</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We report on a transition in a monolayer of C 60 molecules deposited on a WO 2 /W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.2 Å across the transition. The transition from the static state into the rotating state takes place at 259  K . The energy of the spinning state with respect to the lowest energy state, having a single coordinated bond, can be obtained from the statistics of the molecules switching. The binding energy of the molecule in the spinning state can be easily altered by changing the polarity of the bias voltage applied between the STM tip and the surface. The binding energy decreases by 80  meV when the bias polarity of the sample changes from positive to negative with respect to the tip. The results are consistent with the Coulomb blockade model: when electrons travel from the surface to the C 60 molecule, and then to the tip; charge accumulates on the molecule due to the Coulomb blockade. This increases the electrostatic interaction between the molecule’s charge and a corresponding image charge generated on the metallic surface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31690764</pmid><doi>10.1038/s41598-019-52544-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-11, Vol.9 (1), p.1-8, Article 16017
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6831608
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 142/136
639/766/119/544
639/766/36/1122
639/925/357/995
Electrostatic properties
Energy
Experiments
Humanities and Social Sciences
Molecular structure
multidisciplinary
Phase transitions
Polarity
Scanning tunneling microscopy
Science
Science (multidisciplinary)
Temperature
Thermodynamics
title Control of binding of C60 molecules to the substrate by Coulomb blockade
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20binding%20of%20C60%20molecules%20to%20the%20substrate%20by%20Coulomb%20blockade&rft.jtitle=Scientific%20reports&rft.au=Bozhko,%20Sergey%20I.&rft.date=2019-11-05&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=16017&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-52544-4&rft_dat=%3Cproquest_pubme%3E2312251386%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-f8c07d1b308a1c01a69cc432927670fe0a4880bca3154b890b05d083abd5b5af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312251386&rft_id=info:pmid/31690764&rfr_iscdi=true