Loading…

Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes

With every moving day, the aspect that is going to be the most important for modern science and technology is the means to supply sufficient energy for all the scientific applications. As the resource of fossil fuel is draining out fast, an alternative is always required to satisfy the needs of the...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-11, Vol.9 (1), p.16315-15, Article 16315
Main Authors: Ghosh, Sourav, Santhosh, Ravichandran, Jeniffer, Sofia, Raghavan, Vimala, Jacob, George, Nanaji, Katchala, Kollu, Pratap, Jeong, Soon Kwan, Grace, Andrews Nirmala
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With every moving day, the aspect that is going to be the most important for modern science and technology is the means to supply sufficient energy for all the scientific applications. As the resource of fossil fuel is draining out fast, an alternative is always required to satisfy the needs of the future world. Limited resources also force to innovate something that can utilise the resource more efficiently. This work is based on a simple synthesis route of biomass derived hard carbon and to exploring the possibility of using it as electrochemical supercapacitors. A cheap, eco-friendly and easily synthesized carbon material is utilized as electrode for electrochemical energy-storage. Four different hard carbons were synthesized from KOH activated banana stem (KHC), phosphoric acid treated banana stem derived carbons (PHC), corn-cob derived hard carbon (CHC) and potato starch derived hard carbons (SHC) and tested as supercapacitor electrodes. KOH-activated hard carbon has provided 479.23 F/g specific capacitance as calculated from its cycle voltammograms. A detailed analysis is done to correlate the results obtained with the material property. Overall, this work provides an in depth analysis of the science behind the components of an electrochemical energy-storage system as well as why the different characterization techniques are required to assess the quality and reliability of the material for electrochemical supercapacitor applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-52006-x