Loading…
Physicochemical Characterization of Polymer‐Stabilized Coacervate Protocells
The bottom‐up construction of cell mimics has produced a range of membrane‐bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the...
Saved in:
Published in: | Chembiochem : a European journal of chemical biology 2019-10, Vol.20 (20), p.2643-2652 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5715-c68a063494a7b4f09a20f879ab4b53b7571d8c0d47e823fa3bb7c340ed7dc2923 |
---|---|
cites | cdi_FETCH-LOGICAL-c5715-c68a063494a7b4f09a20f879ab4b53b7571d8c0d47e823fa3bb7c340ed7dc2923 |
container_end_page | 2652 |
container_issue | 20 |
container_start_page | 2643 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 20 |
creator | Yewdall, N. Amy Buddingh, Bastiaan C. Altenburg, Wiggert J. Timmermans, Suzanne B. P. E. Vervoort, Daan F. M. Abdelmohsen, Loai K. E. A. Mason, Alexander F. Hest, Jan C. M. |
description | The bottom‐up construction of cell mimics has produced a range of membrane‐bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the cytosol exist in protein‐rich, crowded environments that affect their physicochemical properties, such as diffusion and catalytic activity. Recently, complex coacervates have emerged as attractive protocellular models because their condensed interiors would be expected to mimic this crowding better. Here we explore some relevant physicochemical properties of a recently developed polymer‐stabilized coacervate system, such as the diffusion of macromolecules in the condensed coacervate phase, relative to in dilute solutions, the buffering capacity of the core, the molecular organization of the polymer membrane, the permeability characteristics of this membrane towards a wide range of compounds, and the behavior of a simple enzymatic reaction. In addition, either the coacervate charge or the cargo charge is engineered to allow the selective loading of protein cargo into the coacervate protocells. Our in‐depth characterization has revealed that these polymer‐stabilized coacervate protocells have many desirable properties, thus making them attractive candidates for the investigation of biochemical processes in stable, controlled, tunable, and increasingly cell‐like environments.
It′s a lot like life: The physicochemical characterization of polymer‐stabilized coacervate protocells (such as macromolecular diffusion and buffering capacity within the core, structure and permeability of the polymer membrane) were explored, thus establishing this system as an attractive platform for investigating biochemical processes and enzymatic reactions in stable, tunable, and increasingly cell‐like environments. |
doi_str_mv | 10.1002/cbic.201900195 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306038965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5715-c68a063494a7b4f09a20f879ab4b53b7571d8c0d47e823fa3bb7c340ed7dc2923</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi1UxLSFLcsqUjdsZrj-SRxvkNqIQqURjASsrWvH6bhK4mJniqYrHqHP2CchoxmmpRsW1rXkc4_86SPkLYUZBWDvrfF2xoAqGE_-ghxSwdVUFpwf7O6CMTkhRyldA4AqOH1FJpwCZYznh-TLYrlO3ga7dJ232GbVEiPawUV_h4MPfRaabBHadefiw-_7bwMa3_o7V2dVQOviLQ4uW8QwBOvaNr0mLxtsk3uzm8fkx8XH79Xn6fzrp8vqbD61uaT51BYlQsGFEiiNaEAhg6aUCo0wOTdyhOrSQi2kKxlvkBsjLRfgallbphg_Jh-23puV6VxtXT9EbPVN9B3GtQ7o9b8vvV_qq3CrizKnhZSj4N1OEMPPlUuD7nzaRMDehVXSjFFOcyFoPqKnz9DrsIr9GE8zDgXwUhUbaralbAwpRdfsP0NBb6rSm6r0vqpx4eRphD3-t5sRUFvgl2_d-j86XZ1fVo_yP0cpojk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306038965</pqid></control><display><type>article</type><title>Physicochemical Characterization of Polymer‐Stabilized Coacervate Protocells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yewdall, N. Amy ; Buddingh, Bastiaan C. ; Altenburg, Wiggert J. ; Timmermans, Suzanne B. P. E. ; Vervoort, Daan F. M. ; Abdelmohsen, Loai K. E. A. ; Mason, Alexander F. ; Hest, Jan C. M.</creator><creatorcontrib>Yewdall, N. Amy ; Buddingh, Bastiaan C. ; Altenburg, Wiggert J. ; Timmermans, Suzanne B. P. E. ; Vervoort, Daan F. M. ; Abdelmohsen, Loai K. E. A. ; Mason, Alexander F. ; Hest, Jan C. M.</creatorcontrib><description>The bottom‐up construction of cell mimics has produced a range of membrane‐bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the cytosol exist in protein‐rich, crowded environments that affect their physicochemical properties, such as diffusion and catalytic activity. Recently, complex coacervates have emerged as attractive protocellular models because their condensed interiors would be expected to mimic this crowding better. Here we explore some relevant physicochemical properties of a recently developed polymer‐stabilized coacervate system, such as the diffusion of macromolecules in the condensed coacervate phase, relative to in dilute solutions, the buffering capacity of the core, the molecular organization of the polymer membrane, the permeability characteristics of this membrane towards a wide range of compounds, and the behavior of a simple enzymatic reaction. In addition, either the coacervate charge or the cargo charge is engineered to allow the selective loading of protein cargo into the coacervate protocells. Our in‐depth characterization has revealed that these polymer‐stabilized coacervate protocells have many desirable properties, thus making them attractive candidates for the investigation of biochemical processes in stable, controlled, tunable, and increasingly cell‐like environments.
It′s a lot like life: The physicochemical characterization of polymer‐stabilized coacervate protocells (such as macromolecular diffusion and buffering capacity within the core, structure and permeability of the polymer membrane) were explored, thus establishing this system as an attractive platform for investigating biochemical processes and enzymatic reactions in stable, tunable, and increasingly cell‐like environments.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900195</identifier><identifier>PMID: 31012235</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial Cells - chemistry ; Artificial Cells - cytology ; block copolymers ; Cargo ; Catalytic activity ; complex coacervates ; Cytosol ; macromolecular crowding ; Macromolecular Substances - chemistry ; Macromolecules ; Membrane permeability ; Membranes ; Physicochemical properties ; Polymers ; Polymers - chemistry ; Properties (attributes) ; Proteins ; Proteins - chemistry ; self-assembly ; synthetic cells</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (20), p.2643-2652</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5715-c68a063494a7b4f09a20f879ab4b53b7571d8c0d47e823fa3bb7c340ed7dc2923</citedby><cites>FETCH-LOGICAL-c5715-c68a063494a7b4f09a20f879ab4b53b7571d8c0d47e823fa3bb7c340ed7dc2923</cites><orcidid>0000-0003-2210-4612 ; 0000-0001-7973-2404 ; 0000-0003-4411-9145 ; 0000-0003-1073-9004 ; 0000-0002-2847-0253 ; 0000-0002-6056-3716 ; 0000-0002-0094-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31012235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yewdall, N. Amy</creatorcontrib><creatorcontrib>Buddingh, Bastiaan C.</creatorcontrib><creatorcontrib>Altenburg, Wiggert J.</creatorcontrib><creatorcontrib>Timmermans, Suzanne B. P. E.</creatorcontrib><creatorcontrib>Vervoort, Daan F. M.</creatorcontrib><creatorcontrib>Abdelmohsen, Loai K. E. A.</creatorcontrib><creatorcontrib>Mason, Alexander F.</creatorcontrib><creatorcontrib>Hest, Jan C. M.</creatorcontrib><title>Physicochemical Characterization of Polymer‐Stabilized Coacervate Protocells</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>The bottom‐up construction of cell mimics has produced a range of membrane‐bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the cytosol exist in protein‐rich, crowded environments that affect their physicochemical properties, such as diffusion and catalytic activity. Recently, complex coacervates have emerged as attractive protocellular models because their condensed interiors would be expected to mimic this crowding better. Here we explore some relevant physicochemical properties of a recently developed polymer‐stabilized coacervate system, such as the diffusion of macromolecules in the condensed coacervate phase, relative to in dilute solutions, the buffering capacity of the core, the molecular organization of the polymer membrane, the permeability characteristics of this membrane towards a wide range of compounds, and the behavior of a simple enzymatic reaction. In addition, either the coacervate charge or the cargo charge is engineered to allow the selective loading of protein cargo into the coacervate protocells. Our in‐depth characterization has revealed that these polymer‐stabilized coacervate protocells have many desirable properties, thus making them attractive candidates for the investigation of biochemical processes in stable, controlled, tunable, and increasingly cell‐like environments.
It′s a lot like life: The physicochemical characterization of polymer‐stabilized coacervate protocells (such as macromolecular diffusion and buffering capacity within the core, structure and permeability of the polymer membrane) were explored, thus establishing this system as an attractive platform for investigating biochemical processes and enzymatic reactions in stable, tunable, and increasingly cell‐like environments.</description><subject>Artificial Cells - chemistry</subject><subject>Artificial Cells - cytology</subject><subject>block copolymers</subject><subject>Cargo</subject><subject>Catalytic activity</subject><subject>complex coacervates</subject><subject>Cytosol</subject><subject>macromolecular crowding</subject><subject>Macromolecular Substances - chemistry</subject><subject>Macromolecules</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Physicochemical properties</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Properties (attributes)</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>self-assembly</subject><subject>synthetic cells</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1u1DAURi1UxLSFLcsqUjdsZrj-SRxvkNqIQqURjASsrWvH6bhK4mJniqYrHqHP2CchoxmmpRsW1rXkc4_86SPkLYUZBWDvrfF2xoAqGE_-ghxSwdVUFpwf7O6CMTkhRyldA4AqOH1FJpwCZYznh-TLYrlO3ga7dJ232GbVEiPawUV_h4MPfRaabBHadefiw-_7bwMa3_o7V2dVQOviLQ4uW8QwBOvaNr0mLxtsk3uzm8fkx8XH79Xn6fzrp8vqbD61uaT51BYlQsGFEiiNaEAhg6aUCo0wOTdyhOrSQi2kKxlvkBsjLRfgallbphg_Jh-23puV6VxtXT9EbPVN9B3GtQ7o9b8vvV_qq3CrizKnhZSj4N1OEMPPlUuD7nzaRMDehVXSjFFOcyFoPqKnz9DrsIr9GE8zDgXwUhUbaralbAwpRdfsP0NBb6rSm6r0vqpx4eRphD3-t5sRUFvgl2_d-j86XZ1fVo_yP0cpojk</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Yewdall, N. Amy</creator><creator>Buddingh, Bastiaan C.</creator><creator>Altenburg, Wiggert J.</creator><creator>Timmermans, Suzanne B. P. E.</creator><creator>Vervoort, Daan F. M.</creator><creator>Abdelmohsen, Loai K. E. A.</creator><creator>Mason, Alexander F.</creator><creator>Hest, Jan C. M.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2210-4612</orcidid><orcidid>https://orcid.org/0000-0001-7973-2404</orcidid><orcidid>https://orcid.org/0000-0003-4411-9145</orcidid><orcidid>https://orcid.org/0000-0003-1073-9004</orcidid><orcidid>https://orcid.org/0000-0002-2847-0253</orcidid><orcidid>https://orcid.org/0000-0002-6056-3716</orcidid><orcidid>https://orcid.org/0000-0002-0094-1893</orcidid></search><sort><creationdate>20191015</creationdate><title>Physicochemical Characterization of Polymer‐Stabilized Coacervate Protocells</title><author>Yewdall, N. Amy ; Buddingh, Bastiaan C. ; Altenburg, Wiggert J. ; Timmermans, Suzanne B. P. E. ; Vervoort, Daan F. M. ; Abdelmohsen, Loai K. E. A. ; Mason, Alexander F. ; Hest, Jan C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5715-c68a063494a7b4f09a20f879ab4b53b7571d8c0d47e823fa3bb7c340ed7dc2923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Cells - chemistry</topic><topic>Artificial Cells - cytology</topic><topic>block copolymers</topic><topic>Cargo</topic><topic>Catalytic activity</topic><topic>complex coacervates</topic><topic>Cytosol</topic><topic>macromolecular crowding</topic><topic>Macromolecular Substances - chemistry</topic><topic>Macromolecules</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Physicochemical properties</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Properties (attributes)</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>self-assembly</topic><topic>synthetic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yewdall, N. Amy</creatorcontrib><creatorcontrib>Buddingh, Bastiaan C.</creatorcontrib><creatorcontrib>Altenburg, Wiggert J.</creatorcontrib><creatorcontrib>Timmermans, Suzanne B. P. E.</creatorcontrib><creatorcontrib>Vervoort, Daan F. M.</creatorcontrib><creatorcontrib>Abdelmohsen, Loai K. E. A.</creatorcontrib><creatorcontrib>Mason, Alexander F.</creatorcontrib><creatorcontrib>Hest, Jan C. M.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yewdall, N. Amy</au><au>Buddingh, Bastiaan C.</au><au>Altenburg, Wiggert J.</au><au>Timmermans, Suzanne B. P. E.</au><au>Vervoort, Daan F. M.</au><au>Abdelmohsen, Loai K. E. A.</au><au>Mason, Alexander F.</au><au>Hest, Jan C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical Characterization of Polymer‐Stabilized Coacervate Protocells</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>20</volume><issue>20</issue><spage>2643</spage><epage>2652</epage><pages>2643-2652</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>The bottom‐up construction of cell mimics has produced a range of membrane‐bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the cytosol exist in protein‐rich, crowded environments that affect their physicochemical properties, such as diffusion and catalytic activity. Recently, complex coacervates have emerged as attractive protocellular models because their condensed interiors would be expected to mimic this crowding better. Here we explore some relevant physicochemical properties of a recently developed polymer‐stabilized coacervate system, such as the diffusion of macromolecules in the condensed coacervate phase, relative to in dilute solutions, the buffering capacity of the core, the molecular organization of the polymer membrane, the permeability characteristics of this membrane towards a wide range of compounds, and the behavior of a simple enzymatic reaction. In addition, either the coacervate charge or the cargo charge is engineered to allow the selective loading of protein cargo into the coacervate protocells. Our in‐depth characterization has revealed that these polymer‐stabilized coacervate protocells have many desirable properties, thus making them attractive candidates for the investigation of biochemical processes in stable, controlled, tunable, and increasingly cell‐like environments.
It′s a lot like life: The physicochemical characterization of polymer‐stabilized coacervate protocells (such as macromolecular diffusion and buffering capacity within the core, structure and permeability of the polymer membrane) were explored, thus establishing this system as an attractive platform for investigating biochemical processes and enzymatic reactions in stable, tunable, and increasingly cell‐like environments.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31012235</pmid><doi>10.1002/cbic.201900195</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2210-4612</orcidid><orcidid>https://orcid.org/0000-0001-7973-2404</orcidid><orcidid>https://orcid.org/0000-0003-4411-9145</orcidid><orcidid>https://orcid.org/0000-0003-1073-9004</orcidid><orcidid>https://orcid.org/0000-0002-2847-0253</orcidid><orcidid>https://orcid.org/0000-0002-6056-3716</orcidid><orcidid>https://orcid.org/0000-0002-0094-1893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (20), p.2643-2652 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851677 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Artificial Cells - chemistry Artificial Cells - cytology block copolymers Cargo Catalytic activity complex coacervates Cytosol macromolecular crowding Macromolecular Substances - chemistry Macromolecules Membrane permeability Membranes Physicochemical properties Polymers Polymers - chemistry Properties (attributes) Proteins Proteins - chemistry self-assembly synthetic cells |
title | Physicochemical Characterization of Polymer‐Stabilized Coacervate Protocells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20Characterization%20of%20Polymer%E2%80%90Stabilized%20Coacervate%20Protocells&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Yewdall,%20N.%20Amy&rft.date=2019-10-15&rft.volume=20&rft.issue=20&rft.spage=2643&rft.epage=2652&rft.pages=2643-2652&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900195&rft_dat=%3Cproquest_pubme%3E2306038965%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5715-c68a063494a7b4f09a20f879ab4b53b7571d8c0d47e823fa3bb7c340ed7dc2923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306038965&rft_id=info:pmid/31012235&rfr_iscdi=true |