Loading…

Alternative Virus-Like Particle-Associated Prefusion F Proteins as Maternal Vaccines for Respiratory Syncytial Virus

Maternal vaccination may be the most effective and safest approach to the protection of infants from respiratory syncytial virus (RSV) infection, a severe acute lower respiratory tract disease in infants and young children worldwide. We previously compared five different virus-like particle (VLP)-as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology 2019-12, Vol.93 (23)
Main Authors: Blanco, Jorge C G, Fernando, Lurds R, Zhang, Wei, Kamali, Arash, Boukhvalova, Marina S, McGinnes-Cullen, Lori, Morrison, Trudy G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maternal vaccination may be the most effective and safest approach to the protection of infants from respiratory syncytial virus (RSV) infection, a severe acute lower respiratory tract disease in infants and young children worldwide. We previously compared five different virus-like particle (VLP)-associated, mutation-stabilized prefusion F (pre-F) proteins, including the prototype DS-Cav1 F VLPs. We showed that alternative versions of prefusion F proteins have different conformations and induce different populations of anti-F protein antibodies. Two of these alternative pre-F VLPs, the UC-2 F and UC-3 F VLPs, stimulated in mice higher titers of neutralizing antibodies than DS-Cav1 F VLPs (M. L. Cullen, R. M. Schmidt, M. G. Torres, A. A. Capoferri, et al., Vaccines 7:21-41, 2019, https://doi.org/10.3390/vaccines7010021). Here we describe a comparison of these two pre-F VLPs with DS-Cav1 F VLPs as maternal vaccines in cotton rats and report that UC-3 F VLPs significantly increased the neutralizing antibody (NAb) titers in pregnant dams compared to DS-Cav1 F VLPs. The neutralizing antibody titers in the sera of the offspring of the dams immunized with UC-3 F VLPs were significantly higher than those in the sera of the offspring of dams immunized with DS-Cav1 VLPs. This increase in serum NAb titers translated to a 6- to 40-fold lower virus titer in the lungs of the RSV-challenged offspring of dams immunized with UC-3 F VLPs than in the lungs of the RSV-challenged offspring of dams immunized with DS-Cav1 F VLPs. Importantly, the offspring of UC-3 F VLP-immunized dams showed significant protection from lung pathology and from induction of inflammatory lung cytokine mRNA expression after RSV challenge. Immunization with UC-3 F VLPs also induced durable levels of high-titer neutralizing antibodies in dams. Respiratory syncytial virus (RSV) is a significant human pathogen severely impacting neonates and young children, but no vaccine exists to protect this vulnerable population. Furthermore, direct vaccination of neonates is likely ineffective due to the immaturity of their immune system, and neonate immunization is potentially unsafe. Maternal vaccination may be the best and safest approach to the protection of neonates through the passive transfer of maternal neutralizing antibodies to the fetus after maternal immunization. Here we report that immunization of pregnant cotton rats, a surrogate model for human maternal immunization, with novel RSV virus-like partic
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.00914-19