Loading…
Differences in Genomic Profiles and Outcomes Between Thoracic and Adrenal Neuroblastoma
Abstract Background Neuroblastoma is a biologically and clinically heterogeneous disease. Based on recent studies demonstrating an association between the primary tumor site, prognosis, and commonly measured tumor biological features, we hypothesized that neuroblastomas arising in different sites wo...
Saved in:
Published in: | JNCI : Journal of the National Cancer Institute 2019-11, Vol.111 (11), p.1192-1201 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Neuroblastoma is a biologically and clinically heterogeneous disease. Based on recent studies demonstrating an association between the primary tumor site, prognosis, and commonly measured tumor biological features, we hypothesized that neuroblastomas arising in different sites would show distinct genomic features reflective of the developmental biology of the sympathicoadrenal nervous system.
Methods
We first compared genomic and epigenomic data of primary diagnostic neuroblastomas originating in the adrenal gland (n = 646) compared to thoracic sympathetic ganglia (n = 118). We also evaluated association of common germline variation with these primary sites in 1027 European-American neuroblastoma patients.
Results
We observed higher rates of MYCN amplification, chromosome 1q gain, and chromosome 11q deletion among adrenal tumors, which were highly predictive of functional RNA signatures. Surprisingly, thoracic neuroblastomas were more likely to harbor ALK driver mutations than adrenal cases among all cases (odds ratio = 1.89, 95% confidence interval = 1.04 to 3.43), and among cases without MYCN amplification (odds ratio = 2.86, 95% confidence interval = 1.48 to 5.49). Common germline single nucleotide polymorphisms (SNPs) in BARD1 (previously associated with high-risk neuroblastoma) were found to be strongly associated with predisposition for origin at adrenal, rather than thoracic, sites.
Conclusions
Neuroblastomas arising in the adrenal gland are more likely to harbor structural DNA aberrations including MYCN amplification, whereas thoracic tumors show defects in mitotic checkpoints resulting in hyperdiploidy. Despite the general association of ALK mutations with high-risk disease, thoracic tumors are more likely to harbor gain-of-function ALK aberrations. Site of origin is likely reflective of stage of sympathetic nervous system development when malignant transformation occurs and is a surrogate for underlying tumor biology. |
---|---|
ISSN: | 0027-8874 1460-2105 |
DOI: | 10.1093/jnci/djz027 |