Loading…

Structure and mechanism of the cation–chloride cotransporter NKCC1

Cation–chloride cotransporters (CCCs) mediate the electroneutral transport of chloride, potassium and/or sodium across the membrane. They have critical roles in regulating cell volume, controlling ion absorption and secretion across epithelia, and maintaining intracellular chloride homeostasis. Thes...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2019-08, Vol.572 (7770), p.488-492
Main Authors: Chew, Thomas A., Orlando, Benjamin J., Zhang, Jinru, Latorraca, Naomi R., Wang, Amy, Hollingsworth, Scott A., Chen, Dong-Hua, Dror, Ron O., Liao, Maofu, Feng, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c534t-31ae892e9d1c3eb42d824c626b128c86f8191ad8533f655d00d402aab5c6c2ad3
cites cdi_FETCH-LOGICAL-c534t-31ae892e9d1c3eb42d824c626b128c86f8191ad8533f655d00d402aab5c6c2ad3
container_end_page 492
container_issue 7770
container_start_page 488
container_title Nature (London)
container_volume 572
creator Chew, Thomas A.
Orlando, Benjamin J.
Zhang, Jinru
Latorraca, Naomi R.
Wang, Amy
Hollingsworth, Scott A.
Chen, Dong-Hua
Dror, Ron O.
Liao, Maofu
Feng, Liang
description Cation–chloride cotransporters (CCCs) mediate the electroneutral transport of chloride, potassium and/or sodium across the membrane. They have critical roles in regulating cell volume, controlling ion absorption and secretion across epithelia, and maintaining intracellular chloride homeostasis. These transporters are primary targets for some of the most commonly prescribed drugs. Here we determined the cryo-electron microscopy structure of the Na–K–Cl cotransporter NKCC1, an extensively studied member of the CCC family, from Danio rerio . The structure defines the architecture of this protein family and reveals how cytosolic and transmembrane domains are strategically positioned for communication. Structural analyses, functional characterizations and computational studies reveal the ion-translocation pathway, ion-binding sites and key residues for transport activity. These results provide insights into ion selectivity, coupling and translocation, and establish a framework for understanding the physiological functions of CCCs and interpreting disease-related mutations. The cryo-EM structure of the zebrafish cation–chloride cotransporter NKCC1 reveals the domain organization, ion translocation pathway, ion-binding sites and key residues for binding activity, providing insights into the activity of this family of transporter proteins with key roles in physiology.
doi_str_mv 10.1038/s41586-019-1438-2
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597078819</galeid><sourcerecordid>A597078819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-31ae892e9d1c3eb42d824c626b128c86f8191ad8533f655d00d402aab5c6c2ad3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS1ERactD8AGRbDpJuX6N84GCU0LRa1gUVhbHtuZcZXYUzupxI536Bv2SepRSvmRWFny_e7ROfcg9ArDCQYq32WGuRQ14LbGjMqaPEMLzBpRMyGb52gBQGQNkop9dJDzNQBw3LAXaJ9iKhpgZIFOr8Y0mXFKrtLBVoMzGx18HqrYVePGVUaPPob7n3dm08fkbfmJY9Ihb2MaXaq-XCyX-AjtdbrP7uXje4i-fzz7tjyvL79--rz8cFkbTtlYU6ydbIlrLTbUrRixkjAjiFhhIo0UncQt1lZySjvBuQWwDIjWK26EIdrSQ_R-1t1Oq8FZ40Kx0qtt8oNOP1TUXv09CX6j1vFWCckF8LYIHD8KpHgzuTyqwWfj-l4HF6esCBFNw4G0UNC3_6DXcUqhxCuUBMa5ILJQb2ZqrXunfOh2xzFm628UbxtoZIlUIDxDJsWck-ueHGNQuyLVXKQqRapdkYqUndd_Rn3a-NVcAcgM5DIKa5d--_u_6gPxxah1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280455628</pqid></control><display><type>article</type><title>Structure and mechanism of the cation–chloride cotransporter NKCC1</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Chew, Thomas A. ; Orlando, Benjamin J. ; Zhang, Jinru ; Latorraca, Naomi R. ; Wang, Amy ; Hollingsworth, Scott A. ; Chen, Dong-Hua ; Dror, Ron O. ; Liao, Maofu ; Feng, Liang</creator><creatorcontrib>Chew, Thomas A. ; Orlando, Benjamin J. ; Zhang, Jinru ; Latorraca, Naomi R. ; Wang, Amy ; Hollingsworth, Scott A. ; Chen, Dong-Hua ; Dror, Ron O. ; Liao, Maofu ; Feng, Liang</creatorcontrib><description>Cation–chloride cotransporters (CCCs) mediate the electroneutral transport of chloride, potassium and/or sodium across the membrane. They have critical roles in regulating cell volume, controlling ion absorption and secretion across epithelia, and maintaining intracellular chloride homeostasis. These transporters are primary targets for some of the most commonly prescribed drugs. Here we determined the cryo-electron microscopy structure of the Na–K–Cl cotransporter NKCC1, an extensively studied member of the CCC family, from Danio rerio . The structure defines the architecture of this protein family and reveals how cytosolic and transmembrane domains are strategically positioned for communication. Structural analyses, functional characterizations and computational studies reveal the ion-translocation pathway, ion-binding sites and key residues for transport activity. These results provide insights into ion selectivity, coupling and translocation, and establish a framework for understanding the physiological functions of CCCs and interpreting disease-related mutations. The cryo-EM structure of the zebrafish cation–chloride cotransporter NKCC1 reveals the domain organization, ion translocation pathway, ion-binding sites and key residues for binding activity, providing insights into the activity of this family of transporter proteins with key roles in physiology.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1438-2</identifier><identifier>PMID: 31367042</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/535/1258/1259 ; 631/57/2283 ; 631/92/577 ; 82/83 ; Amino Acid Sequence ; Analysis ; Animals ; Automation ; Binding Sites ; Carrier proteins ; Cations ; Cations, Monovalent - metabolism ; Cell size ; Chloride ; Chloride transport ; Chlorides ; Chlorides - metabolism ; Computer applications ; Cryoelectron Microscopy ; Cytosol - metabolism ; Domains ; Electron microscopy ; Gitelman Syndrome - genetics ; Homeostasis ; Humanities and Social Sciences ; Humans ; Hypertension ; Ion Transport ; Ion-permeable membranes ; Lipids ; Microscopy ; Models, Molecular ; Molecular Dynamics Simulation ; multidisciplinary ; Mutation ; Physiology ; Potassium - metabolism ; Potassium-chloride cotransporter ; Protein Domains ; Proteins ; Science ; Science (multidisciplinary) ; Secretion ; Selectivity ; Sodium ; Sodium - metabolism ; Solute Carrier Family 12, Member 2 - chemistry ; Solute Carrier Family 12, Member 2 - genetics ; Solute Carrier Family 12, Member 2 - metabolism ; Solute Carrier Family 12, Member 2 - ultrastructure ; Structure ; Structure-function relationships ; Translocation ; Transmembrane domains ; Transport ; Zebra fish ; Zebrafish - genetics</subject><ispartof>Nature (London), 2019-08, Vol.572 (7770), p.488-492</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 22, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-31ae892e9d1c3eb42d824c626b128c86f8191ad8533f655d00d402aab5c6c2ad3</citedby><cites>FETCH-LOGICAL-c534t-31ae892e9d1c3eb42d824c626b128c86f8191ad8533f655d00d402aab5c6c2ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31367042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chew, Thomas A.</creatorcontrib><creatorcontrib>Orlando, Benjamin J.</creatorcontrib><creatorcontrib>Zhang, Jinru</creatorcontrib><creatorcontrib>Latorraca, Naomi R.</creatorcontrib><creatorcontrib>Wang, Amy</creatorcontrib><creatorcontrib>Hollingsworth, Scott A.</creatorcontrib><creatorcontrib>Chen, Dong-Hua</creatorcontrib><creatorcontrib>Dror, Ron O.</creatorcontrib><creatorcontrib>Liao, Maofu</creatorcontrib><creatorcontrib>Feng, Liang</creatorcontrib><title>Structure and mechanism of the cation–chloride cotransporter NKCC1</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Cation–chloride cotransporters (CCCs) mediate the electroneutral transport of chloride, potassium and/or sodium across the membrane. They have critical roles in regulating cell volume, controlling ion absorption and secretion across epithelia, and maintaining intracellular chloride homeostasis. These transporters are primary targets for some of the most commonly prescribed drugs. Here we determined the cryo-electron microscopy structure of the Na–K–Cl cotransporter NKCC1, an extensively studied member of the CCC family, from Danio rerio . The structure defines the architecture of this protein family and reveals how cytosolic and transmembrane domains are strategically positioned for communication. Structural analyses, functional characterizations and computational studies reveal the ion-translocation pathway, ion-binding sites and key residues for transport activity. These results provide insights into ion selectivity, coupling and translocation, and establish a framework for understanding the physiological functions of CCCs and interpreting disease-related mutations. The cryo-EM structure of the zebrafish cation–chloride cotransporter NKCC1 reveals the domain organization, ion translocation pathway, ion-binding sites and key residues for binding activity, providing insights into the activity of this family of transporter proteins with key roles in physiology.</description><subject>101/28</subject><subject>631/535/1258/1259</subject><subject>631/57/2283</subject><subject>631/92/577</subject><subject>82/83</subject><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Animals</subject><subject>Automation</subject><subject>Binding Sites</subject><subject>Carrier proteins</subject><subject>Cations</subject><subject>Cations, Monovalent - metabolism</subject><subject>Cell size</subject><subject>Chloride</subject><subject>Chloride transport</subject><subject>Chlorides</subject><subject>Chlorides - metabolism</subject><subject>Computer applications</subject><subject>Cryoelectron Microscopy</subject><subject>Cytosol - metabolism</subject><subject>Domains</subject><subject>Electron microscopy</subject><subject>Gitelman Syndrome - genetics</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Ion Transport</subject><subject>Ion-permeable membranes</subject><subject>Lipids</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Physiology</subject><subject>Potassium - metabolism</subject><subject>Potassium-chloride cotransporter</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secretion</subject><subject>Selectivity</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Solute Carrier Family 12, Member 2 - chemistry</subject><subject>Solute Carrier Family 12, Member 2 - genetics</subject><subject>Solute Carrier Family 12, Member 2 - metabolism</subject><subject>Solute Carrier Family 12, Member 2 - ultrastructure</subject><subject>Structure</subject><subject>Structure-function relationships</subject><subject>Translocation</subject><subject>Transmembrane domains</subject><subject>Transport</subject><subject>Zebra fish</subject><subject>Zebrafish - genetics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS1ERactD8AGRbDpJuX6N84GCU0LRa1gUVhbHtuZcZXYUzupxI536Bv2SepRSvmRWFny_e7ROfcg9ArDCQYq32WGuRQ14LbGjMqaPEMLzBpRMyGb52gBQGQNkop9dJDzNQBw3LAXaJ9iKhpgZIFOr8Y0mXFKrtLBVoMzGx18HqrYVePGVUaPPob7n3dm08fkbfmJY9Ihb2MaXaq-XCyX-AjtdbrP7uXje4i-fzz7tjyvL79--rz8cFkbTtlYU6ydbIlrLTbUrRixkjAjiFhhIo0UncQt1lZySjvBuQWwDIjWK26EIdrSQ_R-1t1Oq8FZ40Kx0qtt8oNOP1TUXv09CX6j1vFWCckF8LYIHD8KpHgzuTyqwWfj-l4HF6esCBFNw4G0UNC3_6DXcUqhxCuUBMa5ILJQb2ZqrXunfOh2xzFm628UbxtoZIlUIDxDJsWck-ueHGNQuyLVXKQqRapdkYqUndd_Rn3a-NVcAcgM5DIKa5d--_u_6gPxxah1</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Chew, Thomas A.</creator><creator>Orlando, Benjamin J.</creator><creator>Zhang, Jinru</creator><creator>Latorraca, Naomi R.</creator><creator>Wang, Amy</creator><creator>Hollingsworth, Scott A.</creator><creator>Chen, Dong-Hua</creator><creator>Dror, Ron O.</creator><creator>Liao, Maofu</creator><creator>Feng, Liang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190822</creationdate><title>Structure and mechanism of the cation–chloride cotransporter NKCC1</title><author>Chew, Thomas A. ; Orlando, Benjamin J. ; Zhang, Jinru ; Latorraca, Naomi R. ; Wang, Amy ; Hollingsworth, Scott A. ; Chen, Dong-Hua ; Dror, Ron O. ; Liao, Maofu ; Feng, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-31ae892e9d1c3eb42d824c626b128c86f8191ad8533f655d00d402aab5c6c2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/28</topic><topic>631/535/1258/1259</topic><topic>631/57/2283</topic><topic>631/92/577</topic><topic>82/83</topic><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Animals</topic><topic>Automation</topic><topic>Binding Sites</topic><topic>Carrier proteins</topic><topic>Cations</topic><topic>Cations, Monovalent - metabolism</topic><topic>Cell size</topic><topic>Chloride</topic><topic>Chloride transport</topic><topic>Chlorides</topic><topic>Chlorides - metabolism</topic><topic>Computer applications</topic><topic>Cryoelectron Microscopy</topic><topic>Cytosol - metabolism</topic><topic>Domains</topic><topic>Electron microscopy</topic><topic>Gitelman Syndrome - genetics</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Ion Transport</topic><topic>Ion-permeable membranes</topic><topic>Lipids</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Physiology</topic><topic>Potassium - metabolism</topic><topic>Potassium-chloride cotransporter</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secretion</topic><topic>Selectivity</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Solute Carrier Family 12, Member 2 - chemistry</topic><topic>Solute Carrier Family 12, Member 2 - genetics</topic><topic>Solute Carrier Family 12, Member 2 - metabolism</topic><topic>Solute Carrier Family 12, Member 2 - ultrastructure</topic><topic>Structure</topic><topic>Structure-function relationships</topic><topic>Translocation</topic><topic>Transmembrane domains</topic><topic>Transport</topic><topic>Zebra fish</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chew, Thomas A.</creatorcontrib><creatorcontrib>Orlando, Benjamin J.</creatorcontrib><creatorcontrib>Zhang, Jinru</creatorcontrib><creatorcontrib>Latorraca, Naomi R.</creatorcontrib><creatorcontrib>Wang, Amy</creatorcontrib><creatorcontrib>Hollingsworth, Scott A.</creatorcontrib><creatorcontrib>Chen, Dong-Hua</creatorcontrib><creatorcontrib>Dror, Ron O.</creatorcontrib><creatorcontrib>Liao, Maofu</creatorcontrib><creatorcontrib>Feng, Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chew, Thomas A.</au><au>Orlando, Benjamin J.</au><au>Zhang, Jinru</au><au>Latorraca, Naomi R.</au><au>Wang, Amy</au><au>Hollingsworth, Scott A.</au><au>Chen, Dong-Hua</au><au>Dror, Ron O.</au><au>Liao, Maofu</au><au>Feng, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanism of the cation–chloride cotransporter NKCC1</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>572</volume><issue>7770</issue><spage>488</spage><epage>492</epage><pages>488-492</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Cation–chloride cotransporters (CCCs) mediate the electroneutral transport of chloride, potassium and/or sodium across the membrane. They have critical roles in regulating cell volume, controlling ion absorption and secretion across epithelia, and maintaining intracellular chloride homeostasis. These transporters are primary targets for some of the most commonly prescribed drugs. Here we determined the cryo-electron microscopy structure of the Na–K–Cl cotransporter NKCC1, an extensively studied member of the CCC family, from Danio rerio . The structure defines the architecture of this protein family and reveals how cytosolic and transmembrane domains are strategically positioned for communication. Structural analyses, functional characterizations and computational studies reveal the ion-translocation pathway, ion-binding sites and key residues for transport activity. These results provide insights into ion selectivity, coupling and translocation, and establish a framework for understanding the physiological functions of CCCs and interpreting disease-related mutations. The cryo-EM structure of the zebrafish cation–chloride cotransporter NKCC1 reveals the domain organization, ion translocation pathway, ion-binding sites and key residues for binding activity, providing insights into the activity of this family of transporter proteins with key roles in physiology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31367042</pmid><doi>10.1038/s41586-019-1438-2</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-08, Vol.572 (7770), p.488-492
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856059
source Springer Nature - Connect here FIRST to enable access
subjects 101/28
631/535/1258/1259
631/57/2283
631/92/577
82/83
Amino Acid Sequence
Analysis
Animals
Automation
Binding Sites
Carrier proteins
Cations
Cations, Monovalent - metabolism
Cell size
Chloride
Chloride transport
Chlorides
Chlorides - metabolism
Computer applications
Cryoelectron Microscopy
Cytosol - metabolism
Domains
Electron microscopy
Gitelman Syndrome - genetics
Homeostasis
Humanities and Social Sciences
Humans
Hypertension
Ion Transport
Ion-permeable membranes
Lipids
Microscopy
Models, Molecular
Molecular Dynamics Simulation
multidisciplinary
Mutation
Physiology
Potassium - metabolism
Potassium-chloride cotransporter
Protein Domains
Proteins
Science
Science (multidisciplinary)
Secretion
Selectivity
Sodium
Sodium - metabolism
Solute Carrier Family 12, Member 2 - chemistry
Solute Carrier Family 12, Member 2 - genetics
Solute Carrier Family 12, Member 2 - metabolism
Solute Carrier Family 12, Member 2 - ultrastructure
Structure
Structure-function relationships
Translocation
Transmembrane domains
Transport
Zebra fish
Zebrafish - genetics
title Structure and mechanism of the cation–chloride cotransporter NKCC1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanism%20of%20the%20cation%E2%80%93chloride%20cotransporter%20NKCC1&rft.jtitle=Nature%20(London)&rft.au=Chew,%20Thomas%20A.&rft.date=2019-08-22&rft.volume=572&rft.issue=7770&rft.spage=488&rft.epage=492&rft.pages=488-492&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1438-2&rft_dat=%3Cgale_pubme%3EA597078819%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-31ae892e9d1c3eb42d824c626b128c86f8191ad8533f655d00d402aab5c6c2ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2280455628&rft_id=info:pmid/31367042&rft_galeid=A597078819&rfr_iscdi=true