Loading…
Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset
White matter hyperintensities (WMHs) are a common manifestation of cerebral small vessel disease, that is increasingly studied with large, pooled multicenter datasets. This data pooling increases statistical power, but poses challenges for automated WMH segmentation. Although there is extensive lite...
Saved in:
Published in: | Scientific reports 2019-11, Vol.9 (1), p.16742-12, Article 16742 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-5725c4645b0085ba48cb4fe7668435e8da1decc1356e07ef5fb5fb743ae2e8893 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-5725c4645b0085ba48cb4fe7668435e8da1decc1356e07ef5fb5fb743ae2e8893 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 16742 |
container_title | Scientific reports |
container_volume | 9 |
creator | Heinen, Rutger Steenwijk, Martijn D. Barkhof, Frederik Biesbroek, J. Matthijs van der Flier, Wiesje M. Kuijf, Hugo J. Prins, Niels D. Vrenken, Hugo Biessels, Geert Jan de Bresser, Jeroen |
description | White matter hyperintensities (WMHs) are a common manifestation of cerebral small vessel disease, that is increasingly studied with large, pooled multicenter datasets. This data pooling increases statistical power, but poses challenges for automated WMH segmentation. Although there is extensive literature on the evaluation of automated WMH segmentation methods, such evaluations in a multicenter setting are lacking. We performed WMH segmentations in sixty patients scanned on six different magnetic resonance imaging (MRI) scanners (10 patients per scanner) using five freely available and fully-automated WMH segmentation methods (Cascade, kNN-TTP, Lesion-TOADS, LST-LGA and LST-LPA). Different MRI scanner vendors and field strengths were included. We compared these automated WMH segmentations with manual WMH segmentations as a reference. Performance of each method both within and across scanners was assessed using spatial and volumetric correspondence with the reference segmentations by Dice’s similarity coefficient (DSC) and intra-class correlation coefficient (ICC) respectively. We found the best performance, both within and across scanners, for kNN-TTP, followed by LST-LPA and LST-LGA, with worse performance for Lesion-TOADS and Cascade. Our findings can serve as a guide for choosing a method and also highlight the importance to further improve and evaluate consistency of methods in a multicenter setting. |
doi_str_mv | 10.1038/s41598-019-52966-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314540596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5725c4645b0085ba48cb4fe7668435e8da1decc1356e07ef5fb5fb743ae2e8893</originalsourceid><addsrcrecordid>eNp9kU9LHTEUxYNYqli_QBcS6MbN2PyfzKYg0taC0C7qOmQyd96LzCSvSUZ53755fWqti4ZALpzfPbmXg9B7Si4o4fpjFlR2uiG0ayTrlGrIATpmRMiGccYOX9RH6DTnO1JPBQXt3qIjTlvWdrQ7RqsfkMaYZhsc4Dji0d8DtkuJsy0w4Ie1L4BrXSDh9XYDyYcCIfuyxRlWM4Rii48Bz1DWccjYB2zxvEzFu6rVpsEWm6G8Q29GO2U4fXxP0O2Xzz-vrpub71-_XV3eNE4KUhrZMumEErInRMveCu16MUKrlBZcgh4sHcA5yqUC0sIox77eVnALDLTu-An6tPfdLP0Mw26IZCezSX62aWui9eZfJfi1WcV7o7RUXNJqcP5okOKvBXIxs88OpskGiEs2jFNJiSREVPTDK_QuLinU9XaUqAvJTlWK7SmXYs4JxudhKDG7KM0-SlOjNH-iNKQ2nb1c47nlKbgK8D2QqxRWkP7-_R_b349XrFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314540596</pqid></control><display><type>article</type><title>Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Heinen, Rutger ; Steenwijk, Martijn D. ; Barkhof, Frederik ; Biesbroek, J. Matthijs ; van der Flier, Wiesje M. ; Kuijf, Hugo J. ; Prins, Niels D. ; Vrenken, Hugo ; Biessels, Geert Jan ; de Bresser, Jeroen</creator><creatorcontrib>Heinen, Rutger ; Steenwijk, Martijn D. ; Barkhof, Frederik ; Biesbroek, J. Matthijs ; van der Flier, Wiesje M. ; Kuijf, Hugo J. ; Prins, Niels D. ; Vrenken, Hugo ; Biessels, Geert Jan ; de Bresser, Jeroen ; TRACE-VCI study group ; TRACE-VCI study group</creatorcontrib><description>White matter hyperintensities (WMHs) are a common manifestation of cerebral small vessel disease, that is increasingly studied with large, pooled multicenter datasets. This data pooling increases statistical power, but poses challenges for automated WMH segmentation. Although there is extensive literature on the evaluation of automated WMH segmentation methods, such evaluations in a multicenter setting are lacking. We performed WMH segmentations in sixty patients scanned on six different magnetic resonance imaging (MRI) scanners (10 patients per scanner) using five freely available and fully-automated WMH segmentation methods (Cascade, kNN-TTP, Lesion-TOADS, LST-LGA and LST-LPA). Different MRI scanner vendors and field strengths were included. We compared these automated WMH segmentations with manual WMH segmentations as a reference. Performance of each method both within and across scanners was assessed using spatial and volumetric correspondence with the reference segmentations by Dice’s similarity coefficient (DSC) and intra-class correlation coefficient (ICC) respectively. We found the best performance, both within and across scanners, for kNN-TTP, followed by LST-LPA and LST-LGA, with worse performance for Lesion-TOADS and Cascade. Our findings can serve as a guide for choosing a method and also highlight the importance to further improve and evaluate consistency of methods in a multicenter setting.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-52966-0</identifier><identifier>PMID: 31727919</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 692/617/375/1370/534 ; 692/617/375/534 ; Aged ; Algorithms ; Automation ; Automation, Laboratory ; Correlation coefficient ; Female ; Humanities and Social Sciences ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Lesions ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Multicenter Studies as Topic ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Scanners ; Science ; Science (multidisciplinary) ; Segmentation ; Substantia alba ; Toads ; Vascular diseases ; White Matter - diagnostic imaging</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.16742-12, Article 16742</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5725c4645b0085ba48cb4fe7668435e8da1decc1356e07ef5fb5fb743ae2e8893</citedby><cites>FETCH-LOGICAL-c540t-5725c4645b0085ba48cb4fe7668435e8da1decc1356e07ef5fb5fb743ae2e8893</cites><orcidid>0000-0003-4094-7509 ; 0000-0003-0759-8407 ; 0000-0001-6862-2496 ; 0000-0001-7017-2148 ; 0000-0001-8766-6224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314540596/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314540596?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31727919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinen, Rutger</creatorcontrib><creatorcontrib>Steenwijk, Martijn D.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Biesbroek, J. Matthijs</creatorcontrib><creatorcontrib>van der Flier, Wiesje M.</creatorcontrib><creatorcontrib>Kuijf, Hugo J.</creatorcontrib><creatorcontrib>Prins, Niels D.</creatorcontrib><creatorcontrib>Vrenken, Hugo</creatorcontrib><creatorcontrib>Biessels, Geert Jan</creatorcontrib><creatorcontrib>de Bresser, Jeroen</creatorcontrib><creatorcontrib>TRACE-VCI study group</creatorcontrib><creatorcontrib>TRACE-VCI study group</creatorcontrib><title>Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>White matter hyperintensities (WMHs) are a common manifestation of cerebral small vessel disease, that is increasingly studied with large, pooled multicenter datasets. This data pooling increases statistical power, but poses challenges for automated WMH segmentation. Although there is extensive literature on the evaluation of automated WMH segmentation methods, such evaluations in a multicenter setting are lacking. We performed WMH segmentations in sixty patients scanned on six different magnetic resonance imaging (MRI) scanners (10 patients per scanner) using five freely available and fully-automated WMH segmentation methods (Cascade, kNN-TTP, Lesion-TOADS, LST-LGA and LST-LPA). Different MRI scanner vendors and field strengths were included. We compared these automated WMH segmentations with manual WMH segmentations as a reference. Performance of each method both within and across scanners was assessed using spatial and volumetric correspondence with the reference segmentations by Dice’s similarity coefficient (DSC) and intra-class correlation coefficient (ICC) respectively. We found the best performance, both within and across scanners, for kNN-TTP, followed by LST-LPA and LST-LGA, with worse performance for Lesion-TOADS and Cascade. Our findings can serve as a guide for choosing a method and also highlight the importance to further improve and evaluate consistency of methods in a multicenter setting.</description><subject>59/57</subject><subject>692/617/375/1370/534</subject><subject>692/617/375/534</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Automation, Laboratory</subject><subject>Correlation coefficient</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Lesions</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multicenter Studies as Topic</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Scanners</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Substantia alba</subject><subject>Toads</subject><subject>Vascular diseases</subject><subject>White Matter - diagnostic imaging</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9LHTEUxYNYqli_QBcS6MbN2PyfzKYg0taC0C7qOmQyd96LzCSvSUZ53755fWqti4ZALpzfPbmXg9B7Si4o4fpjFlR2uiG0ayTrlGrIATpmRMiGccYOX9RH6DTnO1JPBQXt3qIjTlvWdrQ7RqsfkMaYZhsc4Dji0d8DtkuJsy0w4Ie1L4BrXSDh9XYDyYcCIfuyxRlWM4Rii48Bz1DWccjYB2zxvEzFu6rVpsEWm6G8Q29GO2U4fXxP0O2Xzz-vrpub71-_XV3eNE4KUhrZMumEErInRMveCu16MUKrlBZcgh4sHcA5yqUC0sIox77eVnALDLTu-An6tPfdLP0Mw26IZCezSX62aWui9eZfJfi1WcV7o7RUXNJqcP5okOKvBXIxs88OpskGiEs2jFNJiSREVPTDK_QuLinU9XaUqAvJTlWK7SmXYs4JxudhKDG7KM0-SlOjNH-iNKQ2nb1c47nlKbgK8D2QqxRWkP7-_R_b349XrFg</recordid><startdate>20191114</startdate><enddate>20191114</enddate><creator>Heinen, Rutger</creator><creator>Steenwijk, Martijn D.</creator><creator>Barkhof, Frederik</creator><creator>Biesbroek, J. Matthijs</creator><creator>van der Flier, Wiesje M.</creator><creator>Kuijf, Hugo J.</creator><creator>Prins, Niels D.</creator><creator>Vrenken, Hugo</creator><creator>Biessels, Geert Jan</creator><creator>de Bresser, Jeroen</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4094-7509</orcidid><orcidid>https://orcid.org/0000-0003-0759-8407</orcidid><orcidid>https://orcid.org/0000-0001-6862-2496</orcidid><orcidid>https://orcid.org/0000-0001-7017-2148</orcidid><orcidid>https://orcid.org/0000-0001-8766-6224</orcidid></search><sort><creationdate>20191114</creationdate><title>Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset</title><author>Heinen, Rutger ; Steenwijk, Martijn D. ; Barkhof, Frederik ; Biesbroek, J. Matthijs ; van der Flier, Wiesje M. ; Kuijf, Hugo J. ; Prins, Niels D. ; Vrenken, Hugo ; Biessels, Geert Jan ; de Bresser, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5725c4645b0085ba48cb4fe7668435e8da1decc1356e07ef5fb5fb743ae2e8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>59/57</topic><topic>692/617/375/1370/534</topic><topic>692/617/375/534</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Automation, Laboratory</topic><topic>Correlation coefficient</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Lesions</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multicenter Studies as Topic</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Scanners</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Substantia alba</topic><topic>Toads</topic><topic>Vascular diseases</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinen, Rutger</creatorcontrib><creatorcontrib>Steenwijk, Martijn D.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Biesbroek, J. Matthijs</creatorcontrib><creatorcontrib>van der Flier, Wiesje M.</creatorcontrib><creatorcontrib>Kuijf, Hugo J.</creatorcontrib><creatorcontrib>Prins, Niels D.</creatorcontrib><creatorcontrib>Vrenken, Hugo</creatorcontrib><creatorcontrib>Biessels, Geert Jan</creatorcontrib><creatorcontrib>de Bresser, Jeroen</creatorcontrib><creatorcontrib>TRACE-VCI study group</creatorcontrib><creatorcontrib>TRACE-VCI study group</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinen, Rutger</au><au>Steenwijk, Martijn D.</au><au>Barkhof, Frederik</au><au>Biesbroek, J. Matthijs</au><au>van der Flier, Wiesje M.</au><au>Kuijf, Hugo J.</au><au>Prins, Niels D.</au><au>Vrenken, Hugo</au><au>Biessels, Geert Jan</au><au>de Bresser, Jeroen</au><aucorp>TRACE-VCI study group</aucorp><aucorp>TRACE-VCI study group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-14</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>16742</spage><epage>12</epage><pages>16742-12</pages><artnum>16742</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>White matter hyperintensities (WMHs) are a common manifestation of cerebral small vessel disease, that is increasingly studied with large, pooled multicenter datasets. This data pooling increases statistical power, but poses challenges for automated WMH segmentation. Although there is extensive literature on the evaluation of automated WMH segmentation methods, such evaluations in a multicenter setting are lacking. We performed WMH segmentations in sixty patients scanned on six different magnetic resonance imaging (MRI) scanners (10 patients per scanner) using five freely available and fully-automated WMH segmentation methods (Cascade, kNN-TTP, Lesion-TOADS, LST-LGA and LST-LPA). Different MRI scanner vendors and field strengths were included. We compared these automated WMH segmentations with manual WMH segmentations as a reference. Performance of each method both within and across scanners was assessed using spatial and volumetric correspondence with the reference segmentations by Dice’s similarity coefficient (DSC) and intra-class correlation coefficient (ICC) respectively. We found the best performance, both within and across scanners, for kNN-TTP, followed by LST-LPA and LST-LGA, with worse performance for Lesion-TOADS and Cascade. Our findings can serve as a guide for choosing a method and also highlight the importance to further improve and evaluate consistency of methods in a multicenter setting.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31727919</pmid><doi>10.1038/s41598-019-52966-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4094-7509</orcidid><orcidid>https://orcid.org/0000-0003-0759-8407</orcidid><orcidid>https://orcid.org/0000-0001-6862-2496</orcidid><orcidid>https://orcid.org/0000-0001-7017-2148</orcidid><orcidid>https://orcid.org/0000-0001-8766-6224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-11, Vol.9 (1), p.16742-12, Article 16742 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856351 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 59/57 692/617/375/1370/534 692/617/375/534 Aged Algorithms Automation Automation, Laboratory Correlation coefficient Female Humanities and Social Sciences Humans Image Interpretation, Computer-Assisted - methods Image processing Lesions Magnetic Resonance Imaging Male Middle Aged Multicenter Studies as Topic multidisciplinary NMR Nuclear magnetic resonance Scanners Science Science (multidisciplinary) Segmentation Substantia alba Toads Vascular diseases White Matter - diagnostic imaging |
title | Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20five%20automated%20white%20matter%20hyperintensity%20segmentation%20methods%20in%20a%20multicenter%20dataset&rft.jtitle=Scientific%20reports&rft.au=Heinen,%20Rutger&rft.aucorp=TRACE-VCI%20study%20group&rft.date=2019-11-14&rft.volume=9&rft.issue=1&rft.spage=16742&rft.epage=12&rft.pages=16742-12&rft.artnum=16742&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-52966-0&rft_dat=%3Cproquest_pubme%3E2314540596%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-5725c4645b0085ba48cb4fe7668435e8da1decc1356e07ef5fb5fb743ae2e8893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314540596&rft_id=info:pmid/31727919&rfr_iscdi=true |