Loading…

Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo

The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2019-11, Vol.116 (46), p.22946-22952
Main Authors: Kapishnikov, Sergey, Staalsø, Trine, Yang, Yang, Lee, Jiwoong, Pérez-Berná, Ana J., Pereiro, Eva, Werner, Stephan, Guttmann, Peter, Leiserowitz, Leslie, Als-Nielsen, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-bad6769fa22b0fc1c569f0b311fcadac02e1b542454ca59171e64d650f67f7933
cites cdi_FETCH-LOGICAL-c443t-bad6769fa22b0fc1c569f0b311fcadac02e1b542454ca59171e64d650f67f7933
container_end_page 22952
container_issue 46
container_start_page 22946
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Kapishnikov, Sergey
Staalsø, Trine
Yang, Yang
Lee, Jiwoong
Pérez-Berná, Ana J.
Pereiro, Eva
Werner, Stephan
Guttmann, Peter
Leiserowitz, Leslie
Als-Nielsen, Jens
description The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cellswith nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug’s efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.
doi_str_mv 10.1073/pnas.1910123116
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6859308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26861378</jstor_id><sourcerecordid>26861378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-bad6769fa22b0fc1c569f0b311fcadac02e1b542454ca59171e64d650f67f7933</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtBcYmGFj0jR-NKlpF7omDDCVFwZeYeYl_e9l8upTu-Jy7--ecDgIvSVwRqBj57uoyxmRBAhlhIhnaENAkka0Ep6jDQDtmr6l7Ql6VcoWACTv4SU6YURwCZxv0Pw9WYfTiLWZfYprdb_4mIKPDus4-0kHnb0O2OblrmAfcXYWDyEli40LYW2Nzsxr8wHfBl2mZP0y4VEH43c61zK7vdOhEnV77_fpNXpRp8W9eTxP0c8vn39cfmuub75eXV5cN6Zt2dwM2opOyFFTOsBoiOH1AkM1OhpttQHqyMCrPd4azSXpiBOtFRxG0Y2dZOwUfTro7pZhcta4OGcd1C5XV_lBJe3V_5Pof6m7tFei55JBXwU-PgrkdL-4MqvJl9W1ji4tRdVPBypFK2RFPzxBt2nJsdpbqZZTCryr1PmBMjmVkt14fAwBtSaq1kTV30Trxvt_PRz5PxFW4N0B2JY55eOcil4Q1vXsN1r6qFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314522057</pqid></control><display><type>article</type><title>Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kapishnikov, Sergey ; Staalsø, Trine ; Yang, Yang ; Lee, Jiwoong ; Pérez-Berná, Ana J. ; Pereiro, Eva ; Werner, Stephan ; Guttmann, Peter ; Leiserowitz, Leslie ; Als-Nielsen, Jens</creator><creatorcontrib>Kapishnikov, Sergey ; Staalsø, Trine ; Yang, Yang ; Lee, Jiwoong ; Pérez-Berná, Ana J. ; Pereiro, Eva ; Werner, Stephan ; Guttmann, Peter ; Leiserowitz, Leslie ; Als-Nielsen, Jens</creatorcontrib><description>The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cellswith nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug’s efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910123116</identifier><identifier>PMID: 31659055</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antimalarials - pharmacology ; Biocompatibility ; Biological Sciences ; Blood ; Cell culture ; Chloroquine ; Crystal growth ; Crystal surfaces ; Crystallization ; Crystals ; Detoxification ; Drugs ; Erythrocytes ; Erythrocytes - chemistry ; Erythrocytes - metabolism ; Erythrocytes - parasitology ; Heme ; Heme - chemistry ; Heme - metabolism ; Hemeproteins - chemistry ; Hemeproteins - metabolism ; Hemoglobin ; Hemozoin ; Humans ; Malaria, Falciparum - drug therapy ; Malaria, Falciparum - metabolism ; Malaria, Falciparum - parasitology ; Mapping ; Membranes ; Mode of action ; Parasites ; Physical Sciences ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - physiology ; Quinoline ; Quinolines - pharmacology ; Spillage ; X ray microscopy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (46), p.22946-22952</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 12, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-bad6769fa22b0fc1c569f0b311fcadac02e1b542454ca59171e64d650f67f7933</citedby><cites>FETCH-LOGICAL-c443t-bad6769fa22b0fc1c569f0b311fcadac02e1b542454ca59171e64d650f67f7933</cites><orcidid>0000-0002-0534-238X ; 0000-0003-2560-054X ; 0000-0001-7626-5935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26861378$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26861378$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapishnikov, Sergey</creatorcontrib><creatorcontrib>Staalsø, Trine</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lee, Jiwoong</creatorcontrib><creatorcontrib>Pérez-Berná, Ana J.</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Werner, Stephan</creatorcontrib><creatorcontrib>Guttmann, Peter</creatorcontrib><creatorcontrib>Leiserowitz, Leslie</creatorcontrib><creatorcontrib>Als-Nielsen, Jens</creatorcontrib><title>Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cellswith nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug’s efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.</description><subject>Antimalarials - pharmacology</subject><subject>Biocompatibility</subject><subject>Biological Sciences</subject><subject>Blood</subject><subject>Cell culture</subject><subject>Chloroquine</subject><subject>Crystal growth</subject><subject>Crystal surfaces</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Detoxification</subject><subject>Drugs</subject><subject>Erythrocytes</subject><subject>Erythrocytes - chemistry</subject><subject>Erythrocytes - metabolism</subject><subject>Erythrocytes - parasitology</subject><subject>Heme</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>Hemeproteins - chemistry</subject><subject>Hemeproteins - metabolism</subject><subject>Hemoglobin</subject><subject>Hemozoin</subject><subject>Humans</subject><subject>Malaria, Falciparum - drug therapy</subject><subject>Malaria, Falciparum - metabolism</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Mapping</subject><subject>Membranes</subject><subject>Mode of action</subject><subject>Parasites</subject><subject>Physical Sciences</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - physiology</subject><subject>Quinoline</subject><subject>Quinolines - pharmacology</subject><subject>Spillage</subject><subject>X ray microscopy</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtBcYmGFj0jR-NKlpF7omDDCVFwZeYeYl_e9l8upTu-Jy7--ecDgIvSVwRqBj57uoyxmRBAhlhIhnaENAkka0Ep6jDQDtmr6l7Ql6VcoWACTv4SU6YURwCZxv0Pw9WYfTiLWZfYprdb_4mIKPDus4-0kHnb0O2OblrmAfcXYWDyEli40LYW2Nzsxr8wHfBl2mZP0y4VEH43c61zK7vdOhEnV77_fpNXpRp8W9eTxP0c8vn39cfmuub75eXV5cN6Zt2dwM2opOyFFTOsBoiOH1AkM1OhpttQHqyMCrPd4azSXpiBOtFRxG0Y2dZOwUfTro7pZhcta4OGcd1C5XV_lBJe3V_5Pof6m7tFei55JBXwU-PgrkdL-4MqvJl9W1ji4tRdVPBypFK2RFPzxBt2nJsdpbqZZTCryr1PmBMjmVkt14fAwBtSaq1kTV30Trxvt_PRz5PxFW4N0B2JY55eOcil4Q1vXsN1r6qFM</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Kapishnikov, Sergey</creator><creator>Staalsø, Trine</creator><creator>Yang, Yang</creator><creator>Lee, Jiwoong</creator><creator>Pérez-Berná, Ana J.</creator><creator>Pereiro, Eva</creator><creator>Werner, Stephan</creator><creator>Guttmann, Peter</creator><creator>Leiserowitz, Leslie</creator><creator>Als-Nielsen, Jens</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0534-238X</orcidid><orcidid>https://orcid.org/0000-0003-2560-054X</orcidid><orcidid>https://orcid.org/0000-0001-7626-5935</orcidid></search><sort><creationdate>20191112</creationdate><title>Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo</title><author>Kapishnikov, Sergey ; Staalsø, Trine ; Yang, Yang ; Lee, Jiwoong ; Pérez-Berná, Ana J. ; Pereiro, Eva ; Werner, Stephan ; Guttmann, Peter ; Leiserowitz, Leslie ; Als-Nielsen, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-bad6769fa22b0fc1c569f0b311fcadac02e1b542454ca59171e64d650f67f7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimalarials - pharmacology</topic><topic>Biocompatibility</topic><topic>Biological Sciences</topic><topic>Blood</topic><topic>Cell culture</topic><topic>Chloroquine</topic><topic>Crystal growth</topic><topic>Crystal surfaces</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Detoxification</topic><topic>Drugs</topic><topic>Erythrocytes</topic><topic>Erythrocytes - chemistry</topic><topic>Erythrocytes - metabolism</topic><topic>Erythrocytes - parasitology</topic><topic>Heme</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>Hemeproteins - chemistry</topic><topic>Hemeproteins - metabolism</topic><topic>Hemoglobin</topic><topic>Hemozoin</topic><topic>Humans</topic><topic>Malaria, Falciparum - drug therapy</topic><topic>Malaria, Falciparum - metabolism</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Mapping</topic><topic>Membranes</topic><topic>Mode of action</topic><topic>Parasites</topic><topic>Physical Sciences</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - physiology</topic><topic>Quinoline</topic><topic>Quinolines - pharmacology</topic><topic>Spillage</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapishnikov, Sergey</creatorcontrib><creatorcontrib>Staalsø, Trine</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lee, Jiwoong</creatorcontrib><creatorcontrib>Pérez-Berná, Ana J.</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Werner, Stephan</creatorcontrib><creatorcontrib>Guttmann, Peter</creatorcontrib><creatorcontrib>Leiserowitz, Leslie</creatorcontrib><creatorcontrib>Als-Nielsen, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapishnikov, Sergey</au><au>Staalsø, Trine</au><au>Yang, Yang</au><au>Lee, Jiwoong</au><au>Pérez-Berná, Ana J.</au><au>Pereiro, Eva</au><au>Werner, Stephan</au><au>Guttmann, Peter</au><au>Leiserowitz, Leslie</au><au>Als-Nielsen, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>116</volume><issue>46</issue><spage>22946</spage><epage>22952</epage><pages>22946-22952</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cellswith nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug’s efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31659055</pmid><doi>10.1073/pnas.1910123116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0534-238X</orcidid><orcidid>https://orcid.org/0000-0003-2560-054X</orcidid><orcidid>https://orcid.org/0000-0001-7626-5935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (46), p.22946-22952
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6859308
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Antimalarials - pharmacology
Biocompatibility
Biological Sciences
Blood
Cell culture
Chloroquine
Crystal growth
Crystal surfaces
Crystallization
Crystals
Detoxification
Drugs
Erythrocytes
Erythrocytes - chemistry
Erythrocytes - metabolism
Erythrocytes - parasitology
Heme
Heme - chemistry
Heme - metabolism
Hemeproteins - chemistry
Hemeproteins - metabolism
Hemoglobin
Hemozoin
Humans
Malaria, Falciparum - drug therapy
Malaria, Falciparum - metabolism
Malaria, Falciparum - parasitology
Mapping
Membranes
Mode of action
Parasites
Physical Sciences
Plasmodium falciparum
Plasmodium falciparum - drug effects
Plasmodium falciparum - physiology
Quinoline
Quinolines - pharmacology
Spillage
X ray microscopy
title Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20of%20action%20of%20quinoline%20antimalarial%20drugs%20in%20red%20blood%20cells%20infected%20by%20Plasmodium%20falciparum%20revealed%20in%20vivo&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kapishnikov,%20Sergey&rft.date=2019-11-12&rft.volume=116&rft.issue=46&rft.spage=22946&rft.epage=22952&rft.pages=22946-22952&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910123116&rft_dat=%3Cjstor_pubme%3E26861378%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-bad6769fa22b0fc1c569f0b311fcadac02e1b542454ca59171e64d650f67f7933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314522057&rft_id=info:pmid/31659055&rft_jstor_id=26861378&rfr_iscdi=true