Loading…
Strategies among phytoplankton in response to alleviation of nutrient stress in a subtropical gyre
Despite generally low primary productivity and diatom abundances in oligotrophic subtropical gyres, the North Atlantic Subtropical Gyre (NASG) exhibits significant diatom-driven carbon export on an annual basis. Subsurface pulses of nutrients likely fuel brief episodes of diatom growth, but the exac...
Saved in:
Published in: | The ISME Journal 2019-12, Vol.13 (12), p.2984-2997 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite generally low primary productivity and diatom abundances in oligotrophic subtropical gyres, the North Atlantic Subtropical Gyre (NASG) exhibits significant diatom-driven carbon export on an annual basis. Subsurface pulses of nutrients likely fuel brief episodes of diatom growth, but the exact mechanisms utilized by diatoms in response to these nutrient injections remain understudied within near-natural settings. Here we simulated delivery of subsurface nutrients and compare the response among eukaryotic phytoplankton using a combination of physiological techniques and metatranscriptomics. We show that eukaryotic phytoplankton groups exhibit differing levels of transcriptional responsiveness and expression of orthologous genes in response to release from nutrient limitation. In particular, strategies for use of newly delivered nutrients are distinct among phytoplankton groups. Diatoms channel new nitrate to growth-related strategies while physiological measurements and gene expression patterns of other groups suggest alternative strategies. The gene expression patterns displayed here provide insights into the cellular mechanisms that underlie diatom subsistence during chronic nitrogen-depleted conditions and growth upon nutrient delivery that can enhance carbon export from the surface ocean. |
---|---|
ISSN: | 1751-7362 1751-7370 |
DOI: | 10.1038/s41396-019-0489-6 |