Loading…
Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle
We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG co...
Saved in:
Published in: | Human brain mapping 2019-02, Vol.40 (2), p.538-551 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13 |
container_end_page | 551 |
container_issue | 2 |
container_start_page | 538 |
container_title | Human brain mapping |
container_volume | 40 |
creator | Miskovic, Vladimir MacDonald, Kevin J. Rhodes, L. Jack Cote, Kimberly A. |
description | We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep. |
doi_str_mv | 10.1002/hbm.24393 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113279337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</originalsourceid><addsrcrecordid>eNp1kc1u1DAURiNERUthwQsgS2xgkdbXP-PxBglGQ1upiA2sjSe5nqRynGBPGGXHI_CMPAkO01YFidW15KOj796vKF4APQNK2Xmz6c6Y4Jo_Kk6AalVS0Pzx_F7IUgsFx8XTlG4oBZAUnhTHnDKppRYnxddVY8MWE2kDWa8vSDf6XZsq65Fg2MV-mIgNNRn6PcZfP356uycu4rcRQzWRmWvDltRjnMeuQdKMnQ0kecSBVFPl8Vlx5KxP-Px2nhZfPqw_ry7L608XV6t312UlqeYlCoc1SCE11tZtuLagFXMCEJaugiU6pSoAjUxyx9yGsaWoF1xZplQtLfDT4u3BO4ybDutqTm-9GWLb2TiZ3rbm75_QNmbbfzeL5UIqRbPg9a0g9nm_tDNdPgR6bwP2YzIMgDOlOVcZffUPetOPMeT1MiW11oIJnak3B6qKfUoR3X0YoGbuzeTezJ_eMvvyYfp78q6oDJwfgH3rcfq_yVy-_3hQ_gZAJaO-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159994249</pqid></control><display><type>article</type><title>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</title><source>PubMed Central</source><creator>Miskovic, Vladimir ; MacDonald, Kevin J. ; Rhodes, L. Jack ; Cote, Kimberly A.</creator><creatorcontrib>Miskovic, Vladimir ; MacDonald, Kevin J. ; Rhodes, L. Jack ; Cote, Kimberly A.</creatorcontrib><description>We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24393</identifier><identifier>PMID: 30259594</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adolescent ; Adult ; Brain ; Cerebral Cortex - physiology ; Complexity ; Cortex ; EEG ; Electroencephalography ; Electroencephalography - methods ; Entropy ; Female ; Frequency spectrum ; Humans ; Male ; Nonlinear systems ; Nonlinearity ; Polysomnography ; Power spectra ; Scaling ; Sleep ; Sleep Stages - physiology ; Stochasticity ; Time dependence ; Young Adult</subject><ispartof>Human brain mapping, 2019-02, Vol.40 (2), p.538-551</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</citedby><cites>FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</cites><orcidid>0000-0001-6440-5347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865770/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865770/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30259594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miskovic, Vladimir</creatorcontrib><creatorcontrib>MacDonald, Kevin J.</creatorcontrib><creatorcontrib>Rhodes, L. Jack</creatorcontrib><creatorcontrib>Cote, Kimberly A.</creatorcontrib><title>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Brain</subject><subject>Cerebral Cortex - physiology</subject><subject>Complexity</subject><subject>Cortex</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Entropy</subject><subject>Female</subject><subject>Frequency spectrum</subject><subject>Humans</subject><subject>Male</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Polysomnography</subject><subject>Power spectra</subject><subject>Scaling</subject><subject>Sleep</subject><subject>Sleep Stages - physiology</subject><subject>Stochasticity</subject><subject>Time dependence</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAURiNERUthwQsgS2xgkdbXP-PxBglGQ1upiA2sjSe5nqRynGBPGGXHI_CMPAkO01YFidW15KOj796vKF4APQNK2Xmz6c6Y4Jo_Kk6AalVS0Pzx_F7IUgsFx8XTlG4oBZAUnhTHnDKppRYnxddVY8MWE2kDWa8vSDf6XZsq65Fg2MV-mIgNNRn6PcZfP356uycu4rcRQzWRmWvDltRjnMeuQdKMnQ0kecSBVFPl8Vlx5KxP-Px2nhZfPqw_ry7L608XV6t312UlqeYlCoc1SCE11tZtuLagFXMCEJaugiU6pSoAjUxyx9yGsaWoF1xZplQtLfDT4u3BO4ybDutqTm-9GWLb2TiZ3rbm75_QNmbbfzeL5UIqRbPg9a0g9nm_tDNdPgR6bwP2YzIMgDOlOVcZffUPetOPMeT1MiW11oIJnak3B6qKfUoR3X0YoGbuzeTezJ_eMvvyYfp78q6oDJwfgH3rcfq_yVy-_3hQ_gZAJaO-</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Miskovic, Vladimir</creator><creator>MacDonald, Kevin J.</creator><creator>Rhodes, L. Jack</creator><creator>Cote, Kimberly A.</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6440-5347</orcidid></search><sort><creationdate>20190201</creationdate><title>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</title><author>Miskovic, Vladimir ; MacDonald, Kevin J. ; Rhodes, L. Jack ; Cote, Kimberly A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Brain</topic><topic>Cerebral Cortex - physiology</topic><topic>Complexity</topic><topic>Cortex</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Entropy</topic><topic>Female</topic><topic>Frequency spectrum</topic><topic>Humans</topic><topic>Male</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Polysomnography</topic><topic>Power spectra</topic><topic>Scaling</topic><topic>Sleep</topic><topic>Sleep Stages - physiology</topic><topic>Stochasticity</topic><topic>Time dependence</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miskovic, Vladimir</creatorcontrib><creatorcontrib>MacDonald, Kevin J.</creatorcontrib><creatorcontrib>Rhodes, L. Jack</creatorcontrib><creatorcontrib>Cote, Kimberly A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miskovic, Vladimir</au><au>MacDonald, Kevin J.</au><au>Rhodes, L. Jack</au><au>Cote, Kimberly A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>40</volume><issue>2</issue><spage>538</spage><epage>551</epage><pages>538-551</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30259594</pmid><doi>10.1002/hbm.24393</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6440-5347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2019-02, Vol.40 (2), p.538-551 |
issn | 1065-9471 1097-0193 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865770 |
source | PubMed Central |
subjects | Adolescent Adult Brain Cerebral Cortex - physiology Complexity Cortex EEG Electroencephalography Electroencephalography - methods Entropy Female Frequency spectrum Humans Male Nonlinear systems Nonlinearity Polysomnography Power spectra Scaling Sleep Sleep Stages - physiology Stochasticity Time dependence Young Adult |
title | Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20EEG%20multiscale%20entropy%20and%20power%E2%80%90law%20frequency%20scaling%20during%20the%20human%20sleep%20cycle&rft.jtitle=Human%20brain%20mapping&rft.au=Miskovic,%20Vladimir&rft.date=2019-02-01&rft.volume=40&rft.issue=2&rft.spage=538&rft.epage=551&rft.pages=538-551&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24393&rft_dat=%3Cproquest_pubme%3E2113279337%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159994249&rft_id=info:pmid/30259594&rfr_iscdi=true |