Loading…

Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle

We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG co...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 2019-02, Vol.40 (2), p.538-551
Main Authors: Miskovic, Vladimir, MacDonald, Kevin J., Rhodes, L. Jack, Cote, Kimberly A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13
cites cdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13
container_end_page 551
container_issue 2
container_start_page 538
container_title Human brain mapping
container_volume 40
creator Miskovic, Vladimir
MacDonald, Kevin J.
Rhodes, L. Jack
Cote, Kimberly A.
description We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.
doi_str_mv 10.1002/hbm.24393
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113279337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</originalsourceid><addsrcrecordid>eNp1kc1u1DAURiNERUthwQsgS2xgkdbXP-PxBglGQ1upiA2sjSe5nqRynGBPGGXHI_CMPAkO01YFidW15KOj796vKF4APQNK2Xmz6c6Y4Jo_Kk6AalVS0Pzx_F7IUgsFx8XTlG4oBZAUnhTHnDKppRYnxddVY8MWE2kDWa8vSDf6XZsq65Fg2MV-mIgNNRn6PcZfP356uycu4rcRQzWRmWvDltRjnMeuQdKMnQ0kecSBVFPl8Vlx5KxP-Px2nhZfPqw_ry7L608XV6t312UlqeYlCoc1SCE11tZtuLagFXMCEJaugiU6pSoAjUxyx9yGsaWoF1xZplQtLfDT4u3BO4ybDutqTm-9GWLb2TiZ3rbm75_QNmbbfzeL5UIqRbPg9a0g9nm_tDNdPgR6bwP2YzIMgDOlOVcZffUPetOPMeT1MiW11oIJnak3B6qKfUoR3X0YoGbuzeTezJ_eMvvyYfp78q6oDJwfgH3rcfq_yVy-_3hQ_gZAJaO-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159994249</pqid></control><display><type>article</type><title>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</title><source>PubMed Central</source><creator>Miskovic, Vladimir ; MacDonald, Kevin J. ; Rhodes, L. Jack ; Cote, Kimberly A.</creator><creatorcontrib>Miskovic, Vladimir ; MacDonald, Kevin J. ; Rhodes, L. Jack ; Cote, Kimberly A.</creatorcontrib><description>We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24393</identifier><identifier>PMID: 30259594</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Adult ; Brain ; Cerebral Cortex - physiology ; Complexity ; Cortex ; EEG ; Electroencephalography ; Electroencephalography - methods ; Entropy ; Female ; Frequency spectrum ; Humans ; Male ; Nonlinear systems ; Nonlinearity ; Polysomnography ; Power spectra ; Scaling ; Sleep ; Sleep Stages - physiology ; Stochasticity ; Time dependence ; Young Adult</subject><ispartof>Human brain mapping, 2019-02, Vol.40 (2), p.538-551</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</citedby><cites>FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</cites><orcidid>0000-0001-6440-5347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865770/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865770/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30259594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miskovic, Vladimir</creatorcontrib><creatorcontrib>MacDonald, Kevin J.</creatorcontrib><creatorcontrib>Rhodes, L. Jack</creatorcontrib><creatorcontrib>Cote, Kimberly A.</creatorcontrib><title>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Brain</subject><subject>Cerebral Cortex - physiology</subject><subject>Complexity</subject><subject>Cortex</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Entropy</subject><subject>Female</subject><subject>Frequency spectrum</subject><subject>Humans</subject><subject>Male</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Polysomnography</subject><subject>Power spectra</subject><subject>Scaling</subject><subject>Sleep</subject><subject>Sleep Stages - physiology</subject><subject>Stochasticity</subject><subject>Time dependence</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAURiNERUthwQsgS2xgkdbXP-PxBglGQ1upiA2sjSe5nqRynGBPGGXHI_CMPAkO01YFidW15KOj796vKF4APQNK2Xmz6c6Y4Jo_Kk6AalVS0Pzx_F7IUgsFx8XTlG4oBZAUnhTHnDKppRYnxddVY8MWE2kDWa8vSDf6XZsq65Fg2MV-mIgNNRn6PcZfP356uycu4rcRQzWRmWvDltRjnMeuQdKMnQ0kecSBVFPl8Vlx5KxP-Px2nhZfPqw_ry7L608XV6t312UlqeYlCoc1SCE11tZtuLagFXMCEJaugiU6pSoAjUxyx9yGsaWoF1xZplQtLfDT4u3BO4ybDutqTm-9GWLb2TiZ3rbm75_QNmbbfzeL5UIqRbPg9a0g9nm_tDNdPgR6bwP2YzIMgDOlOVcZffUPetOPMeT1MiW11oIJnak3B6qKfUoR3X0YoGbuzeTezJ_eMvvyYfp78q6oDJwfgH3rcfq_yVy-_3hQ_gZAJaO-</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Miskovic, Vladimir</creator><creator>MacDonald, Kevin J.</creator><creator>Rhodes, L. Jack</creator><creator>Cote, Kimberly A.</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6440-5347</orcidid></search><sort><creationdate>20190201</creationdate><title>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</title><author>Miskovic, Vladimir ; MacDonald, Kevin J. ; Rhodes, L. Jack ; Cote, Kimberly A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Brain</topic><topic>Cerebral Cortex - physiology</topic><topic>Complexity</topic><topic>Cortex</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Entropy</topic><topic>Female</topic><topic>Frequency spectrum</topic><topic>Humans</topic><topic>Male</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Polysomnography</topic><topic>Power spectra</topic><topic>Scaling</topic><topic>Sleep</topic><topic>Sleep Stages - physiology</topic><topic>Stochasticity</topic><topic>Time dependence</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miskovic, Vladimir</creatorcontrib><creatorcontrib>MacDonald, Kevin J.</creatorcontrib><creatorcontrib>Rhodes, L. Jack</creatorcontrib><creatorcontrib>Cote, Kimberly A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miskovic, Vladimir</au><au>MacDonald, Kevin J.</au><au>Rhodes, L. Jack</au><au>Cote, Kimberly A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>40</volume><issue>2</issue><spage>538</spage><epage>551</epage><pages>538-551</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30259594</pmid><doi>10.1002/hbm.24393</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6440-5347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2019-02, Vol.40 (2), p.538-551
issn 1065-9471
1097-0193
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865770
source PubMed Central
subjects Adolescent
Adult
Brain
Cerebral Cortex - physiology
Complexity
Cortex
EEG
Electroencephalography
Electroencephalography - methods
Entropy
Female
Frequency spectrum
Humans
Male
Nonlinear systems
Nonlinearity
Polysomnography
Power spectra
Scaling
Sleep
Sleep Stages - physiology
Stochasticity
Time dependence
Young Adult
title Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20EEG%20multiscale%20entropy%20and%20power%E2%80%90law%20frequency%20scaling%20during%20the%20human%20sleep%20cycle&rft.jtitle=Human%20brain%20mapping&rft.au=Miskovic,%20Vladimir&rft.date=2019-02-01&rft.volume=40&rft.issue=2&rft.spage=538&rft.epage=551&rft.pages=538-551&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24393&rft_dat=%3Cproquest_pubme%3E2113279337%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5093-e4fed15459edafb39a1972f41e18fc18ef77c119e253f2fb2284d637a277d5a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159994249&rft_id=info:pmid/30259594&rfr_iscdi=true