Loading…

Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases

Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted dataset...

Full description

Saved in:
Bibliographic Details
Published in:Database : the journal of biological databases and curation 2019, Vol.2019
Main Authors: Martínez-Romero, Marcos, O'Connor, Martin J, Egyedi, Attila L, Willrett, Debra, Hardi, Josef, Graybeal, John, Musen, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73
cites cdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73
container_end_page
container_issue
container_start_page
container_title Database : the journal of biological databases and curation
container_volume 2019
creator Martínez-Romero, Marcos
O'Connor, Martin J
Egyedi, Attila L
Willrett, Debra
Hardi, Josef
Graybeal, John
Musen, Mark A
description Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.
doi_str_mv 10.1093/database/baz059
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242814837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</originalsourceid><addsrcrecordid>eNpVUU1LJDEQDaKoq569LTl6mZ18dXf6Ioj4BYIXPYdKunqMdCezSXph_fXb4zjinqqoevXeKx4h55z94qyVyw4KWMi4tPDOqnaPHPOm0gumarn_rT8iP3J-Y6xutFaH5EhywZlo2DEpL9mHFYWco_NQfAw0TQPS0YePeehoDCUOceUx0xLpCgMmKDMCC2zkaUIXxxFD93GeaZ_iSMdpKH49E1kfR-y8g4HuzOZTctDDkPHss56Ql9ub5-v7xePT3cP11ePCyVaWRS1EI7qeYy-ctlD1IKxrNWvRVbzvrFKNq1qlpOVM8sY6zRS0jndct4L1jTwhl1ve9WRnEw5DSTCYdfIjpL8mgjf_b4J_Nav4x9S6rmvGZoKLT4IUf0-Yixl9djgMEDBO2QihhOZKy43Wcgt1KeacsP-S4cxssjK79802q_ni53d3X_hdOPIfm-mXAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242814837</pqid></control><display><type>article</type><title>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</title><source>PubMed Central</source><source>Oxford Academic Journals (Open Access)</source><creator>Martínez-Romero, Marcos ; O'Connor, Martin J ; Egyedi, Attila L ; Willrett, Debra ; Hardi, Josef ; Graybeal, John ; Musen, Mark A</creator><creatorcontrib>Martínez-Romero, Marcos ; O'Connor, Martin J ; Egyedi, Attila L ; Willrett, Debra ; Hardi, Josef ; Graybeal, John ; Musen, Mark A</creatorcontrib><description>Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.</description><identifier>ISSN: 1758-0463</identifier><identifier>EISSN: 1758-0463</identifier><identifier>DOI: 10.1093/database/baz059</identifier><identifier>PMID: 31210270</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology - standards ; Data Mining - methods ; Data Mining - standards ; Databases, Factual - standards ; Metadata ; Original</subject><ispartof>Database : the journal of biological databases and curation, 2019, Vol.2019</ispartof><rights>The Author(s) 2019. Published by Oxford University Press.</rights><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</citedby><cites>FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</cites><orcidid>0000-0003-3325-793X ; 0000-0003-0730-5053 ; 0000-0002-2533-6681 ; 0000-0001-6875-5360 ; 0000-0002-2256-2421 ; 0000-0002-3767-2957 ; 0000-0002-9814-3258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,27902,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31210270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez-Romero, Marcos</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Egyedi, Attila L</creatorcontrib><creatorcontrib>Willrett, Debra</creatorcontrib><creatorcontrib>Hardi, Josef</creatorcontrib><creatorcontrib>Graybeal, John</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><title>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</title><title>Database : the journal of biological databases and curation</title><addtitle>Database (Oxford)</addtitle><description>Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.</description><subject>Computational Biology - standards</subject><subject>Data Mining - methods</subject><subject>Data Mining - standards</subject><subject>Databases, Factual - standards</subject><subject>Metadata</subject><subject>Original</subject><issn>1758-0463</issn><issn>1758-0463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LJDEQDaKoq569LTl6mZ18dXf6Ioj4BYIXPYdKunqMdCezSXph_fXb4zjinqqoevXeKx4h55z94qyVyw4KWMi4tPDOqnaPHPOm0gumarn_rT8iP3J-Y6xutFaH5EhywZlo2DEpL9mHFYWco_NQfAw0TQPS0YePeehoDCUOceUx0xLpCgMmKDMCC2zkaUIXxxFD93GeaZ_iSMdpKH49E1kfR-y8g4HuzOZTctDDkPHss56Ql9ub5-v7xePT3cP11ePCyVaWRS1EI7qeYy-ctlD1IKxrNWvRVbzvrFKNq1qlpOVM8sY6zRS0jndct4L1jTwhl1ve9WRnEw5DSTCYdfIjpL8mgjf_b4J_Nav4x9S6rmvGZoKLT4IUf0-Yixl9djgMEDBO2QihhOZKy43Wcgt1KeacsP-S4cxssjK79802q_ni53d3X_hdOPIfm-mXAw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Martínez-Romero, Marcos</creator><creator>O'Connor, Martin J</creator><creator>Egyedi, Attila L</creator><creator>Willrett, Debra</creator><creator>Hardi, Josef</creator><creator>Graybeal, John</creator><creator>Musen, Mark A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3325-793X</orcidid><orcidid>https://orcid.org/0000-0003-0730-5053</orcidid><orcidid>https://orcid.org/0000-0002-2533-6681</orcidid><orcidid>https://orcid.org/0000-0001-6875-5360</orcidid><orcidid>https://orcid.org/0000-0002-2256-2421</orcidid><orcidid>https://orcid.org/0000-0002-3767-2957</orcidid><orcidid>https://orcid.org/0000-0002-9814-3258</orcidid></search><sort><creationdate>2019</creationdate><title>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</title><author>Martínez-Romero, Marcos ; O'Connor, Martin J ; Egyedi, Attila L ; Willrett, Debra ; Hardi, Josef ; Graybeal, John ; Musen, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Biology - standards</topic><topic>Data Mining - methods</topic><topic>Data Mining - standards</topic><topic>Databases, Factual - standards</topic><topic>Metadata</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Romero, Marcos</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Egyedi, Attila L</creatorcontrib><creatorcontrib>Willrett, Debra</creatorcontrib><creatorcontrib>Hardi, Josef</creatorcontrib><creatorcontrib>Graybeal, John</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Database : the journal of biological databases and curation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Romero, Marcos</au><au>O'Connor, Martin J</au><au>Egyedi, Attila L</au><au>Willrett, Debra</au><au>Hardi, Josef</au><au>Graybeal, John</au><au>Musen, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</atitle><jtitle>Database : the journal of biological databases and curation</jtitle><addtitle>Database (Oxford)</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issn>1758-0463</issn><eissn>1758-0463</eissn><abstract>Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31210270</pmid><doi>10.1093/database/baz059</doi><orcidid>https://orcid.org/0000-0003-3325-793X</orcidid><orcidid>https://orcid.org/0000-0003-0730-5053</orcidid><orcidid>https://orcid.org/0000-0002-2533-6681</orcidid><orcidid>https://orcid.org/0000-0001-6875-5360</orcidid><orcidid>https://orcid.org/0000-0002-2256-2421</orcidid><orcidid>https://orcid.org/0000-0002-3767-2957</orcidid><orcidid>https://orcid.org/0000-0002-9814-3258</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-0463
ispartof Database : the journal of biological databases and curation, 2019, Vol.2019
issn 1758-0463
1758-0463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866600
source PubMed Central; Oxford Academic Journals (Open Access)
subjects Computational Biology - standards
Data Mining - methods
Data Mining - standards
Databases, Factual - standards
Metadata
Original
title Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20association%20rule%20mining%20and%20ontologies%20to%20generate%20metadata%20recommendations%20from%20multiple%20biomedical%20databases&rft.jtitle=Database%20:%20the%20journal%20of%20biological%20databases%20and%20curation&rft.au=Mart%C3%ADnez-Romero,%20Marcos&rft.date=2019&rft.volume=2019&rft.issn=1758-0463&rft.eissn=1758-0463&rft_id=info:doi/10.1093/database/baz059&rft_dat=%3Cproquest_pubme%3E2242814837%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242814837&rft_id=info:pmid/31210270&rfr_iscdi=true