Loading…
Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases
Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted dataset...
Saved in:
Published in: | Database : the journal of biological databases and curation 2019, Vol.2019 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Database : the journal of biological databases and curation |
container_volume | 2019 |
creator | Martínez-Romero, Marcos O'Connor, Martin J Egyedi, Attila L Willrett, Debra Hardi, Josef Graybeal, John Musen, Mark A |
description | Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata. |
doi_str_mv | 10.1093/database/baz059 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242814837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</originalsourceid><addsrcrecordid>eNpVUU1LJDEQDaKoq569LTl6mZ18dXf6Ioj4BYIXPYdKunqMdCezSXph_fXb4zjinqqoevXeKx4h55z94qyVyw4KWMi4tPDOqnaPHPOm0gumarn_rT8iP3J-Y6xutFaH5EhywZlo2DEpL9mHFYWco_NQfAw0TQPS0YePeehoDCUOceUx0xLpCgMmKDMCC2zkaUIXxxFD93GeaZ_iSMdpKH49E1kfR-y8g4HuzOZTctDDkPHss56Ql9ub5-v7xePT3cP11ePCyVaWRS1EI7qeYy-ctlD1IKxrNWvRVbzvrFKNq1qlpOVM8sY6zRS0jndct4L1jTwhl1ve9WRnEw5DSTCYdfIjpL8mgjf_b4J_Nav4x9S6rmvGZoKLT4IUf0-Yixl9djgMEDBO2QihhOZKy43Wcgt1KeacsP-S4cxssjK79802q_ni53d3X_hdOPIfm-mXAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242814837</pqid></control><display><type>article</type><title>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</title><source>PubMed Central</source><source>Oxford Academic Journals (Open Access)</source><creator>Martínez-Romero, Marcos ; O'Connor, Martin J ; Egyedi, Attila L ; Willrett, Debra ; Hardi, Josef ; Graybeal, John ; Musen, Mark A</creator><creatorcontrib>Martínez-Romero, Marcos ; O'Connor, Martin J ; Egyedi, Attila L ; Willrett, Debra ; Hardi, Josef ; Graybeal, John ; Musen, Mark A</creatorcontrib><description>Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.</description><identifier>ISSN: 1758-0463</identifier><identifier>EISSN: 1758-0463</identifier><identifier>DOI: 10.1093/database/baz059</identifier><identifier>PMID: 31210270</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology - standards ; Data Mining - methods ; Data Mining - standards ; Databases, Factual - standards ; Metadata ; Original</subject><ispartof>Database : the journal of biological databases and curation, 2019, Vol.2019</ispartof><rights>The Author(s) 2019. Published by Oxford University Press.</rights><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</citedby><cites>FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</cites><orcidid>0000-0003-3325-793X ; 0000-0003-0730-5053 ; 0000-0002-2533-6681 ; 0000-0001-6875-5360 ; 0000-0002-2256-2421 ; 0000-0002-3767-2957 ; 0000-0002-9814-3258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,27902,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31210270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez-Romero, Marcos</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Egyedi, Attila L</creatorcontrib><creatorcontrib>Willrett, Debra</creatorcontrib><creatorcontrib>Hardi, Josef</creatorcontrib><creatorcontrib>Graybeal, John</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><title>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</title><title>Database : the journal of biological databases and curation</title><addtitle>Database (Oxford)</addtitle><description>Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.</description><subject>Computational Biology - standards</subject><subject>Data Mining - methods</subject><subject>Data Mining - standards</subject><subject>Databases, Factual - standards</subject><subject>Metadata</subject><subject>Original</subject><issn>1758-0463</issn><issn>1758-0463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LJDEQDaKoq569LTl6mZ18dXf6Ioj4BYIXPYdKunqMdCezSXph_fXb4zjinqqoevXeKx4h55z94qyVyw4KWMi4tPDOqnaPHPOm0gumarn_rT8iP3J-Y6xutFaH5EhywZlo2DEpL9mHFYWco_NQfAw0TQPS0YePeehoDCUOceUx0xLpCgMmKDMCC2zkaUIXxxFD93GeaZ_iSMdpKH49E1kfR-y8g4HuzOZTctDDkPHss56Ql9ub5-v7xePT3cP11ePCyVaWRS1EI7qeYy-ctlD1IKxrNWvRVbzvrFKNq1qlpOVM8sY6zRS0jndct4L1jTwhl1ve9WRnEw5DSTCYdfIjpL8mgjf_b4J_Nav4x9S6rmvGZoKLT4IUf0-Yixl9djgMEDBO2QihhOZKy43Wcgt1KeacsP-S4cxssjK79802q_ni53d3X_hdOPIfm-mXAw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Martínez-Romero, Marcos</creator><creator>O'Connor, Martin J</creator><creator>Egyedi, Attila L</creator><creator>Willrett, Debra</creator><creator>Hardi, Josef</creator><creator>Graybeal, John</creator><creator>Musen, Mark A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3325-793X</orcidid><orcidid>https://orcid.org/0000-0003-0730-5053</orcidid><orcidid>https://orcid.org/0000-0002-2533-6681</orcidid><orcidid>https://orcid.org/0000-0001-6875-5360</orcidid><orcidid>https://orcid.org/0000-0002-2256-2421</orcidid><orcidid>https://orcid.org/0000-0002-3767-2957</orcidid><orcidid>https://orcid.org/0000-0002-9814-3258</orcidid></search><sort><creationdate>2019</creationdate><title>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</title><author>Martínez-Romero, Marcos ; O'Connor, Martin J ; Egyedi, Attila L ; Willrett, Debra ; Hardi, Josef ; Graybeal, John ; Musen, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Biology - standards</topic><topic>Data Mining - methods</topic><topic>Data Mining - standards</topic><topic>Databases, Factual - standards</topic><topic>Metadata</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Romero, Marcos</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Egyedi, Attila L</creatorcontrib><creatorcontrib>Willrett, Debra</creatorcontrib><creatorcontrib>Hardi, Josef</creatorcontrib><creatorcontrib>Graybeal, John</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Database : the journal of biological databases and curation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Romero, Marcos</au><au>O'Connor, Martin J</au><au>Egyedi, Attila L</au><au>Willrett, Debra</au><au>Hardi, Josef</au><au>Graybeal, John</au><au>Musen, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases</atitle><jtitle>Database : the journal of biological databases and curation</jtitle><addtitle>Database (Oxford)</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issn>1758-0463</issn><eissn>1758-0463</eissn><abstract>Metadata-the machine-readable descriptions of the data-are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31210270</pmid><doi>10.1093/database/baz059</doi><orcidid>https://orcid.org/0000-0003-3325-793X</orcidid><orcidid>https://orcid.org/0000-0003-0730-5053</orcidid><orcidid>https://orcid.org/0000-0002-2533-6681</orcidid><orcidid>https://orcid.org/0000-0001-6875-5360</orcidid><orcidid>https://orcid.org/0000-0002-2256-2421</orcidid><orcidid>https://orcid.org/0000-0002-3767-2957</orcidid><orcidid>https://orcid.org/0000-0002-9814-3258</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-0463 |
ispartof | Database : the journal of biological databases and curation, 2019, Vol.2019 |
issn | 1758-0463 1758-0463 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866600 |
source | PubMed Central; Oxford Academic Journals (Open Access) |
subjects | Computational Biology - standards Data Mining - methods Data Mining - standards Databases, Factual - standards Metadata Original |
title | Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20association%20rule%20mining%20and%20ontologies%20to%20generate%20metadata%20recommendations%20from%20multiple%20biomedical%20databases&rft.jtitle=Database%20:%20the%20journal%20of%20biological%20databases%20and%20curation&rft.au=Mart%C3%ADnez-Romero,%20Marcos&rft.date=2019&rft.volume=2019&rft.issn=1758-0463&rft.eissn=1758-0463&rft_id=info:doi/10.1093/database/baz059&rft_dat=%3Cproquest_pubme%3E2242814837%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-62272df1ef2c8ba5fa2bc9809ec51fdb447c59443b10317bc804a9c1d18920f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242814837&rft_id=info:pmid/31210270&rfr_iscdi=true |