Loading…

A novel mode of DnaA–DnaA interaction promotes ADP dissociation for reactivation of replication initiation activity

Abstract ATP-DnaA is temporally increased to initiate replication during the cell cycle. Two chromosomal loci, DARS (DnaA-reactivating sequences) 1 and 2, promote ATP-DnaA production by nucleotide exchange of ADP-DnaA for timely initiation. ADP-DnaA complexes are constructed on DARS1 and DARS2, bear...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2019-12, Vol.47 (21), p.11209-11224
Main Authors: Sugiyama, Ryo, Kasho, Kazutoshi, Miyoshi, Kenya, Ozaki, Shogo, Kagawa, Wataru, Kurumizaka, Hitoshi, Katayama, Tsutomu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract ATP-DnaA is temporally increased to initiate replication during the cell cycle. Two chromosomal loci, DARS (DnaA-reactivating sequences) 1 and 2, promote ATP-DnaA production by nucleotide exchange of ADP-DnaA for timely initiation. ADP-DnaA complexes are constructed on DARS1 and DARS2, bearing a cluster of three DnaA-binding sequences (DnaA boxes I−III), promoting ADP dissociation. Although DnaA has an AAA+ domain, which ordinarily directs construction of oligomers in a head-to-tail manner, DnaA boxes I and II are oriented oppositely. In this study, we constructed a structural model of a head-to-head dimer of DnaA AAA+ domains, and analyzed residues residing on the interface of the model dimer. Gln208 was specifically required for DARS-dependent ADP dissociation in vitro, and in vivo analysis yielded consistent results. Additionally, ADP release from DnaA protomers bound to DnaA boxes I and II was dependent on Gln208 of the DnaA protomers, and DnaA box III-bound DnaA did not release ADP nor require Gln208 for ADP dissociation by DARS–DnaA complexes. Based on these and other findings, we propose a model for DARS–DnaA complex dynamics during ADP dissociation, and provide novel insight into the regulatory mechanisms of DnaA and the interaction modes of AAA+ domains.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkz795