Loading…

White-matter abnormalities in attention deficit hyperactivity disorder: A diffusion tensor imaging study

Current evidence suggests that attention deficit hyperactivity disorder (ADHD) involves dysfunction in wide functional networks of brain areas associated with attention and cognition. This study examines the structural integrity of white‐matter neural pathways, which underpin these functional networ...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 2009-09, Vol.30 (9), p.2757-2765
Main Authors: Silk, Timothy J., Vance, Alasdair, Rinehart, Nicole, Bradshaw, John L., Cunnington, Ross
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current evidence suggests that attention deficit hyperactivity disorder (ADHD) involves dysfunction in wide functional networks of brain areas associated with attention and cognition. This study examines the structural integrity of white‐matter neural pathways, which underpin these functional networks, connecting fronto‐striatal and fronto‐parietal circuits, in children with ADHD. Fifteen right‐handed 8 to 18‐year‐old males with ADHD‐combined type and 15 right‐handed, age, verbal, and performance IQ‐matched, healthy males underwent diffusion tensor imaging. A recent method of tract‐based spatial statistics was used to examine fractional anisotropy (FA) and mean diffusivity within major white‐matter pathways throughout the whole‐brain. White‐matter abnormalities were found in several distinct clusters within left fronto‐temporal regions and right parietal‐occipital regions. Specifically, participants with ADHD showed greater FA in white‐matter regions underlying inferior parietal, occipito‐parietal, inferior frontal, and inferior temporal cortex. Secondly, eigenvalue analysis suggests that the difference in FA in ADHD may relate to a lesser degree of neural branching within key white‐matter pathways. Tractography methods showed these regions to generally form part of white‐matter pathways connecting prefrontal and parieto‐occipital areas with the striatum and the cerebellum. Our findings demonstrate anomalous white‐matter development in ADHD in distinct cortical regions that have previously been shown to be dysfunctional or hypoactive in fMRI studies of ADHD. These data add to an emerging picture of abnormal development within fronto‐parietal cortical networks that may underpin the cognitive and attentional disturbances associated with ADHD. Hum Brain Mapp, 2009. © 2008 Wiley‐Liss, Inc.
ISSN:1065-9471
1097-0193
DOI:10.1002/hbm.20703