Loading…

Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data

Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 1999, Vol.8 (2-3), p.73-79
Main Authors: Woods, Roger P., Dapretto, Mirella, Sicotte, Nancy L., Toga, Arthur W., Mazziotta, John C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3
container_end_page 79
container_issue 2-3
container_start_page 73
container_title Human brain mapping
container_volume 8
creator Woods, Roger P.
Dapretto, Mirella
Sicotte, Nancy L.
Toga, Arthur W.
Mazziotta, John C.
description Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6873303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70823034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3</originalsourceid><addsrcrecordid>eNp9kV1v0zAUhiMEYmPwF5Cv0CY1nR3XdVLQpJFBWzE2CcbH3dFJYnceqVPsBOgf4ffitFMZAnHl8_HqfY_1RNGE0SGjNDk-fD_P50eMZjKmLOOHLMuyo3SSHPMXkk8mp_OzePbyLTvhQzrML58nsbwX7e_k9_t6LOJsJNle9Mj7G0oZE5Q9jPYYFclIZGI_-pk7ha1pLEFbkc4r0miC5AprNA7L67hslqsgKGpFsK3RE904gmXZOWzVgGDXNstQVQNiG1sbq9ARY1vlfFfcqLIlTi2Mb90mZLBJQYv12hvfR-nOlv0Ga2KWuDB2QSps8XH0QGPt1ZPb9yD68PrVVT6Lzy-n8_z0PC7DB1isCpSMF5UoqWZZoXUyVgkXCc8ymhSiwiIMsFI6LXQmUz4Wgmoqx1SkFUqt-EF0svVddcVSVaWy4dIaVi4c49bQoIE_N9Zcw6L5BuNUck55MHh2a-Car53yLSyNL1Vdo1VN50HSNAm6URC-2wpL13jvlN6FMAo9boAeN_T8oOcHPW5IIQEOkgME3NDjDi2F_DLMZTB9evf8O5Zbvr9Tv5tarf-K_G_iPwI3fTCNt6aBq_qxM0X3BcaSSwGfLqbwcXYxPfv8ZgSC_wLyNNhb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70823034</pqid></control><display><type>article</type><title>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</title><source>PubMed Central</source><creator>Woods, Roger P. ; Dapretto, Mirella ; Sicotte, Nancy L. ; Toga, Arthur W. ; Mazziotta, John C.</creator><creatorcontrib>Woods, Roger P. ; Dapretto, Mirella ; Sicotte, Nancy L. ; Toga, Arthur W. ; Mazziotta, John C.</creatorcontrib><description>Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/(SICI)1097-0193(1999)8:2/3&lt;73::AID-HBM1&gt;3.0.CO;2-7</identifier><identifier>PMID: 10524595</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Anatomy, Artistic ; Brain - anatomy &amp; histology ; brain atlas ; Brain Mapping - methods ; fMRI ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Medical Illustration ; PET ; statistics ; stereotaxis</subject><ispartof>Human brain mapping, 1999, Vol.8 (2-3), p.73-79</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873303/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873303/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10524595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Dapretto, Mirella</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Mazziotta, John C.</creatorcontrib><title>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Anatomy, Artistic</subject><subject>Brain - anatomy &amp; histology</subject><subject>brain atlas</subject><subject>Brain Mapping - methods</subject><subject>fMRI</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical Illustration</subject><subject>PET</subject><subject>statistics</subject><subject>stereotaxis</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kV1v0zAUhiMEYmPwF5Cv0CY1nR3XdVLQpJFBWzE2CcbH3dFJYnceqVPsBOgf4ffitFMZAnHl8_HqfY_1RNGE0SGjNDk-fD_P50eMZjKmLOOHLMuyo3SSHPMXkk8mp_OzePbyLTvhQzrML58nsbwX7e_k9_t6LOJsJNle9Mj7G0oZE5Q9jPYYFclIZGI_-pk7ha1pLEFbkc4r0miC5AprNA7L67hslqsgKGpFsK3RE904gmXZOWzVgGDXNstQVQNiG1sbq9ARY1vlfFfcqLIlTi2Mb90mZLBJQYv12hvfR-nOlv0Ga2KWuDB2QSps8XH0QGPt1ZPb9yD68PrVVT6Lzy-n8_z0PC7DB1isCpSMF5UoqWZZoXUyVgkXCc8ymhSiwiIMsFI6LXQmUz4Wgmoqx1SkFUqt-EF0svVddcVSVaWy4dIaVi4c49bQoIE_N9Zcw6L5BuNUck55MHh2a-Car53yLSyNL1Vdo1VN50HSNAm6URC-2wpL13jvlN6FMAo9boAeN_T8oOcHPW5IIQEOkgME3NDjDi2F_DLMZTB9evf8O5Zbvr9Tv5tarf-K_G_iPwI3fTCNt6aBq_qxM0X3BcaSSwGfLqbwcXYxPfv8ZgSC_wLyNNhb</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Woods, Roger P.</creator><creator>Dapretto, Mirella</creator><creator>Sicotte, Nancy L.</creator><creator>Toga, Arthur W.</creator><creator>Mazziotta, John C.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1999</creationdate><title>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</title><author>Woods, Roger P. ; Dapretto, Mirella ; Sicotte, Nancy L. ; Toga, Arthur W. ; Mazziotta, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Anatomy, Artistic</topic><topic>Brain - anatomy &amp; histology</topic><topic>brain atlas</topic><topic>Brain Mapping - methods</topic><topic>fMRI</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical Illustration</topic><topic>PET</topic><topic>statistics</topic><topic>stereotaxis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Dapretto, Mirella</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Mazziotta, John C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Roger P.</au><au>Dapretto, Mirella</au><au>Sicotte, Nancy L.</au><au>Toga, Arthur W.</au><au>Mazziotta, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>1999</date><risdate>1999</risdate><volume>8</volume><issue>2-3</issue><spage>73</spage><epage>79</epage><pages>73-79</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10524595</pmid><doi>10.1002/(SICI)1097-0193(1999)8:2/3&lt;73::AID-HBM1&gt;3.0.CO;2-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 1999, Vol.8 (2-3), p.73-79
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6873303
source PubMed Central
subjects Anatomy, Artistic
Brain - anatomy & histology
brain atlas
Brain Mapping - methods
fMRI
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Medical Illustration
PET
statistics
stereotaxis
title Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20and%20use%20of%20a%20Talairach-compatible%20atlas%20for%20accurate,%20automated,%20nonlinear%20intersubject%20registration,%20and%20analysis%20of%20functional%20imaging%20data&rft.jtitle=Human%20brain%20mapping&rft.au=Woods,%20Roger%20P.&rft.date=1999&rft.volume=8&rft.issue=2-3&rft.spage=73&rft.epage=79&rft.pages=73-79&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/(SICI)1097-0193(1999)8:2/3%3C73::AID-HBM1%3E3.0.CO;2-7&rft_dat=%3Cproquest_pubme%3E70823034%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70823034&rft_id=info:pmid/10524595&rfr_iscdi=true