Loading…
Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data
Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use...
Saved in:
Published in: | Human brain mapping 1999, Vol.8 (2-3), p.73-79 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3 |
container_end_page | 79 |
container_issue | 2-3 |
container_start_page | 73 |
container_title | Human brain mapping |
container_volume | 8 |
creator | Woods, Roger P. Dapretto, Mirella Sicotte, Nancy L. Toga, Arthur W. Mazziotta, John C. |
description | Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6873303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70823034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3</originalsourceid><addsrcrecordid>eNp9kV1v0zAUhiMEYmPwF5Cv0CY1nR3XdVLQpJFBWzE2CcbH3dFJYnceqVPsBOgf4ffitFMZAnHl8_HqfY_1RNGE0SGjNDk-fD_P50eMZjKmLOOHLMuyo3SSHPMXkk8mp_OzePbyLTvhQzrML58nsbwX7e_k9_t6LOJsJNle9Mj7G0oZE5Q9jPYYFclIZGI_-pk7ha1pLEFbkc4r0miC5AprNA7L67hslqsgKGpFsK3RE904gmXZOWzVgGDXNstQVQNiG1sbq9ARY1vlfFfcqLIlTi2Mb90mZLBJQYv12hvfR-nOlv0Ga2KWuDB2QSps8XH0QGPt1ZPb9yD68PrVVT6Lzy-n8_z0PC7DB1isCpSMF5UoqWZZoXUyVgkXCc8ymhSiwiIMsFI6LXQmUz4Wgmoqx1SkFUqt-EF0svVddcVSVaWy4dIaVi4c49bQoIE_N9Zcw6L5BuNUck55MHh2a-Car53yLSyNL1Vdo1VN50HSNAm6URC-2wpL13jvlN6FMAo9boAeN_T8oOcHPW5IIQEOkgME3NDjDi2F_DLMZTB9evf8O5Zbvr9Tv5tarf-K_G_iPwI3fTCNt6aBq_qxM0X3BcaSSwGfLqbwcXYxPfv8ZgSC_wLyNNhb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70823034</pqid></control><display><type>article</type><title>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</title><source>PubMed Central</source><creator>Woods, Roger P. ; Dapretto, Mirella ; Sicotte, Nancy L. ; Toga, Arthur W. ; Mazziotta, John C.</creator><creatorcontrib>Woods, Roger P. ; Dapretto, Mirella ; Sicotte, Nancy L. ; Toga, Arthur W. ; Mazziotta, John C.</creatorcontrib><description>Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7</identifier><identifier>PMID: 10524595</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Anatomy, Artistic ; Brain - anatomy & histology ; brain atlas ; Brain Mapping - methods ; fMRI ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Medical Illustration ; PET ; statistics ; stereotaxis</subject><ispartof>Human brain mapping, 1999, Vol.8 (2-3), p.73-79</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873303/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873303/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10524595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Dapretto, Mirella</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Mazziotta, John C.</creatorcontrib><title>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Anatomy, Artistic</subject><subject>Brain - anatomy & histology</subject><subject>brain atlas</subject><subject>Brain Mapping - methods</subject><subject>fMRI</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical Illustration</subject><subject>PET</subject><subject>statistics</subject><subject>stereotaxis</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kV1v0zAUhiMEYmPwF5Cv0CY1nR3XdVLQpJFBWzE2CcbH3dFJYnceqVPsBOgf4ffitFMZAnHl8_HqfY_1RNGE0SGjNDk-fD_P50eMZjKmLOOHLMuyo3SSHPMXkk8mp_OzePbyLTvhQzrML58nsbwX7e_k9_t6LOJsJNle9Mj7G0oZE5Q9jPYYFclIZGI_-pk7ha1pLEFbkc4r0miC5AprNA7L67hslqsgKGpFsK3RE904gmXZOWzVgGDXNstQVQNiG1sbq9ARY1vlfFfcqLIlTi2Mb90mZLBJQYv12hvfR-nOlv0Ga2KWuDB2QSps8XH0QGPt1ZPb9yD68PrVVT6Lzy-n8_z0PC7DB1isCpSMF5UoqWZZoXUyVgkXCc8ymhSiwiIMsFI6LXQmUz4Wgmoqx1SkFUqt-EF0svVddcVSVaWy4dIaVi4c49bQoIE_N9Zcw6L5BuNUck55MHh2a-Car53yLSyNL1Vdo1VN50HSNAm6URC-2wpL13jvlN6FMAo9boAeN_T8oOcHPW5IIQEOkgME3NDjDi2F_DLMZTB9evf8O5Zbvr9Tv5tarf-K_G_iPwI3fTCNt6aBq_qxM0X3BcaSSwGfLqbwcXYxPfv8ZgSC_wLyNNhb</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Woods, Roger P.</creator><creator>Dapretto, Mirella</creator><creator>Sicotte, Nancy L.</creator><creator>Toga, Arthur W.</creator><creator>Mazziotta, John C.</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1999</creationdate><title>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</title><author>Woods, Roger P. ; Dapretto, Mirella ; Sicotte, Nancy L. ; Toga, Arthur W. ; Mazziotta, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Anatomy, Artistic</topic><topic>Brain - anatomy & histology</topic><topic>brain atlas</topic><topic>Brain Mapping - methods</topic><topic>fMRI</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical Illustration</topic><topic>PET</topic><topic>statistics</topic><topic>stereotaxis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Dapretto, Mirella</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Mazziotta, John C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Roger P.</au><au>Dapretto, Mirella</au><au>Sicotte, Nancy L.</au><au>Toga, Arthur W.</au><au>Mazziotta, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>1999</date><risdate>1999</risdate><volume>8</volume><issue>2-3</issue><spage>73</spage><epage>79</epage><pages>73-79</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10524595</pmid><doi>10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 1999, Vol.8 (2-3), p.73-79 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6873303 |
source | PubMed Central |
subjects | Anatomy, Artistic Brain - anatomy & histology brain atlas Brain Mapping - methods fMRI Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Medical Illustration PET statistics stereotaxis |
title | Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20and%20use%20of%20a%20Talairach-compatible%20atlas%20for%20accurate,%20automated,%20nonlinear%20intersubject%20registration,%20and%20analysis%20of%20functional%20imaging%20data&rft.jtitle=Human%20brain%20mapping&rft.au=Woods,%20Roger%20P.&rft.date=1999&rft.volume=8&rft.issue=2-3&rft.spage=73&rft.epage=79&rft.pages=73-79&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/(SICI)1097-0193(1999)8:2/3%3C73::AID-HBM1%3E3.0.CO;2-7&rft_dat=%3Cproquest_pubme%3E70823034%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5241-eba713bd5c0f19bff26e235239902b5dab26eadef8bf97836550f076058da7fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70823034&rft_id=info:pmid/10524595&rfr_iscdi=true |