Loading…

When and where mortality occurs throughout the annual cycle changes with age in a migratory bird: individual vs population implications

The annual cycle of most animals is structured into discrete stages, such as breeding, migration and dispersal. While there is growing appreciation of the importance of different stages of an organism’s annual cycle for its fitness and population dynamics, almost nothing is known about if and how su...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-11, Vol.9 (1), p.17352-8, Article 17352
Main Authors: Sergio, Fabrizio, Tavecchia, Giacomo, Tanferna, Alessandro, Blas, Julio, Blanco, Guillermo, Hiraldo, Fernando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The annual cycle of most animals is structured into discrete stages, such as breeding, migration and dispersal. While there is growing appreciation of the importance of different stages of an organism’s annual cycle for its fitness and population dynamics, almost nothing is known about if and how such seasonal effects can change through a species lifespan. Here, we take advantage of the opportunity offered by a long-term satellite/GPS-tracking study and a reliable method of remote death-detection to show that certain stages of both the annual and life cycle of a migratory long-lived raptor, the Black kite Milvus migrans , may represent sensitive bottlenecks for survival. In particular, migratory journeys caused bursts of concentrated-mortality throughout life, but the relative importance of stage-specific survival changed with age. On the other hand, the balance between short-stages of high mortality and long-stages of low mortality made population-growth similarly dependent on all portions of the annual cycle. Our results illustrate how the population dynamics of migratory organisms can be inextricably linked to ecological pressures balanced over multiple stages of the annual cycle and thus multiple areas of the globe, suggesting the frequent need for challenging conservation strategies targeting all portions of a species year-round range.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-54026-z