Loading…
Molecular Characterization of Auxin Efflux Carrier- ABCB1 in hexaploid wheat
Auxin is an important phytohormone that regulates response, differentiation, and development of plant cell, tissue, and organs. Along with its local production, long-distance transport coordinated by the efflux/influx membrane transporters is instrumental in plant development and architecture. In th...
Saved in:
Published in: | Scientific reports 2019-11, Vol.9 (1), p.17327-14, Article 17327 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Auxin is an important phytohormone that regulates response, differentiation, and development of plant cell, tissue, and organs. Along with its local production, long-distance transport coordinated by the efflux/influx membrane transporters is instrumental in plant development and architecture. In the present study, we cloned and characterized a wheat (
Triticum aestivum
) auxin efflux carrier ABCB1. The TaABCB1 was physically localized to the proximal 15% of the short arm of wheat homoeologous group 7 chromosomes. Size of the Chinese spring (CS) homoeologs genomic copies ranged from 5.3–6.2 kb with the
7A
copy being the largest due to novel insertions in its third intron. The three homoeologous copies share 95–97% sequence similarity at the nucleotide, 98–99% amino acid, and overall Q-score of 0.98 at 3-D structure level. Though detected in all analyzed tissues,
TaABCB1
predominantly expressed in the meristematic tissues likely due to the presence of meristem-specific activation regulatory element identified in the promoter region. RNAi plants of
TaABCB1
gene resulted in reduced plant height and increased seed width. Promoter analysis revealed several responsive elements detected in the promoter region including that for different hormones as auxin, gibberellic acid, jasmonic acid and abscisic acid, light, and circadian regulated elements. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-51482-5 |