Loading…

The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase

Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2019-09, Vol.431 (20), p.3975-4006
Main Authors: Belogurov, Georgiy A., Artsimovitch, Irina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation. [Display omitted] •RNA chain elongation is processive yet intermittent.•The trigger loop positions reactive groups for catalysis.•Translocation is controlled by nucleic acids energetics and trigger loop dynamics.•Error frequency and fast synthesis are counterbalanced.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2019.05.042