Loading…

Exceptional points in classical spin dynamics

Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-11, Vol.9 (1), p.17484-7, Article 17484
Main Authors: Galda, Alexey, Vinokur, Valerii M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53
cites cdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53
container_end_page 7
container_issue 1
container_start_page 17484
container_title Scientific reports
container_volume 9
creator Galda, Alexey
Vinokur, Valerii M.
description Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time ( P T )-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.
doi_str_mv 10.1038/s41598-019-53455-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6877609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318736041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</originalsourceid><addsrcrecordid>eNp9kU9PFjEQxhsjEYJ8AQ7mDVy8rE7_bdsLCSEIJiRe4Nx0Z_tCyb7turOvkW9vYRHRg7200_nNM9M-jB1y-MRB2s-kuHa2Ae4aLZXWDbxhewKUboQU4u2r8y47ILqHurRwirt3bFdy0xprxR5rzn9iHOdUchhWY0l5plXKKxwCUcJ6R2MN-4ccNgnpPdtZh4HiwfO-z26-nF-fXTZX3y6-np1eNaiBz00LuleiBVSGywA9Rq175CBU4GstNErkznVWghBdr7tO9VFwHsK6VV2PWu6zk0V33HabWOvzPIXBj1PahOnBl5D835mc7vxt-eFba0wLrgocLQKF5uQJ0xzxDkvOEWfPtbGgbIU-PneZyvdtpNlvEmEchpBj2ZIXklsjW1C8osf_oPdlO9U_e6KMk9a4x7HFQuFUiKa4fpmYg390zS-u-eqaf3LNQy368PqtLyW_PaqAXACqqXwbpz-9_yP7C8-EoTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317938795</pqid></control><display><type>article</type><title>Exceptional points in classical spin dynamics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Galda, Alexey ; Vinokur, Valerii M.</creator><creatorcontrib>Galda, Alexey ; Vinokur, Valerii M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time ( P T )-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-53455-0</identifier><identifier>PMID: 31767882</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2793 ; 639/766/119/1001 ; Adiabatic ; Asymmetry ; Efficiency ; Eigenvalues ; Humanities and Social Sciences ; Magnetic fields ; MATERIALS SCIENCE ; multidisciplinary ; Optics ; Phase transitions ; Protocol ; Science ; Science (multidisciplinary) ; Symmetry</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.17484-7, Article 17484</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</citedby><cites>FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</cites><orcidid>0000-0002-0977-3515 ; 0000000209773515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2317938795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2317938795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31767882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1578048$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Galda, Alexey</creatorcontrib><creatorcontrib>Vinokur, Valerii M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Exceptional points in classical spin dynamics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time ( P T )-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.</description><subject>639/301/119/2793</subject><subject>639/766/119/1001</subject><subject>Adiabatic</subject><subject>Asymmetry</subject><subject>Efficiency</subject><subject>Eigenvalues</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Phase transitions</subject><subject>Protocol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symmetry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9PFjEQxhsjEYJ8AQ7mDVy8rE7_bdsLCSEIJiRe4Nx0Z_tCyb7turOvkW9vYRHRg7200_nNM9M-jB1y-MRB2s-kuHa2Ae4aLZXWDbxhewKUboQU4u2r8y47ILqHurRwirt3bFdy0xprxR5rzn9iHOdUchhWY0l5plXKKxwCUcJ6R2MN-4ccNgnpPdtZh4HiwfO-z26-nF-fXTZX3y6-np1eNaiBz00LuleiBVSGywA9Rq175CBU4GstNErkznVWghBdr7tO9VFwHsK6VV2PWu6zk0V33HabWOvzPIXBj1PahOnBl5D835mc7vxt-eFba0wLrgocLQKF5uQJ0xzxDkvOEWfPtbGgbIU-PneZyvdtpNlvEmEchpBj2ZIXklsjW1C8osf_oPdlO9U_e6KMk9a4x7HFQuFUiKa4fpmYg390zS-u-eqaf3LNQy368PqtLyW_PaqAXACqqXwbpz-9_yP7C8-EoTU</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Galda, Alexey</creator><creator>Vinokur, Valerii M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0977-3515</orcidid><orcidid>https://orcid.org/0000000209773515</orcidid></search><sort><creationdate>20191125</creationdate><title>Exceptional points in classical spin dynamics</title><author>Galda, Alexey ; Vinokur, Valerii M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/2793</topic><topic>639/766/119/1001</topic><topic>Adiabatic</topic><topic>Asymmetry</topic><topic>Efficiency</topic><topic>Eigenvalues</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Phase transitions</topic><topic>Protocol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galda, Alexey</creatorcontrib><creatorcontrib>Vinokur, Valerii M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galda, Alexey</au><au>Vinokur, Valerii M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exceptional points in classical spin dynamics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-25</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>17484</spage><epage>7</epage><pages>17484-7</pages><artnum>17484</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time ( P T )-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31767882</pmid><doi>10.1038/s41598-019-53455-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0977-3515</orcidid><orcidid>https://orcid.org/0000000209773515</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-11, Vol.9 (1), p.17484-7, Article 17484
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6877609
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/119/2793
639/766/119/1001
Adiabatic
Asymmetry
Efficiency
Eigenvalues
Humanities and Social Sciences
Magnetic fields
MATERIALS SCIENCE
multidisciplinary
Optics
Phase transitions
Protocol
Science
Science (multidisciplinary)
Symmetry
title Exceptional points in classical spin dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exceptional%20points%20in%20classical%20spin%20dynamics&rft.jtitle=Scientific%20reports&rft.au=Galda,%20Alexey&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-11-25&rft.volume=9&rft.issue=1&rft.spage=17484&rft.epage=7&rft.pages=17484-7&rft.artnum=17484&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-53455-0&rft_dat=%3Cproquest_pubme%3E2318736041%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2317938795&rft_id=info:pmid/31767882&rfr_iscdi=true