Loading…
Exceptional points in classical spin dynamics
Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with...
Saved in:
Published in: | Scientific reports 2019-11, Vol.9 (1), p.17484-7, Article 17484 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 17484 |
container_title | Scientific reports |
container_volume | 9 |
creator | Galda, Alexey Vinokur, Valerii M. |
description | Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time (
P
T
)-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics. |
doi_str_mv | 10.1038/s41598-019-53455-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6877609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318736041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</originalsourceid><addsrcrecordid>eNp9kU9PFjEQxhsjEYJ8AQ7mDVy8rE7_bdsLCSEIJiRe4Nx0Z_tCyb7turOvkW9vYRHRg7200_nNM9M-jB1y-MRB2s-kuHa2Ae4aLZXWDbxhewKUboQU4u2r8y47ILqHurRwirt3bFdy0xprxR5rzn9iHOdUchhWY0l5plXKKxwCUcJ6R2MN-4ccNgnpPdtZh4HiwfO-z26-nF-fXTZX3y6-np1eNaiBz00LuleiBVSGywA9Rq175CBU4GstNErkznVWghBdr7tO9VFwHsK6VV2PWu6zk0V33HabWOvzPIXBj1PahOnBl5D835mc7vxt-eFba0wLrgocLQKF5uQJ0xzxDkvOEWfPtbGgbIU-PneZyvdtpNlvEmEchpBj2ZIXklsjW1C8osf_oPdlO9U_e6KMk9a4x7HFQuFUiKa4fpmYg390zS-u-eqaf3LNQy368PqtLyW_PaqAXACqqXwbpz-9_yP7C8-EoTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317938795</pqid></control><display><type>article</type><title>Exceptional points in classical spin dynamics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Galda, Alexey ; Vinokur, Valerii M.</creator><creatorcontrib>Galda, Alexey ; Vinokur, Valerii M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time (
P
T
)-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-53455-0</identifier><identifier>PMID: 31767882</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2793 ; 639/766/119/1001 ; Adiabatic ; Asymmetry ; Efficiency ; Eigenvalues ; Humanities and Social Sciences ; Magnetic fields ; MATERIALS SCIENCE ; multidisciplinary ; Optics ; Phase transitions ; Protocol ; Science ; Science (multidisciplinary) ; Symmetry</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.17484-7, Article 17484</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</citedby><cites>FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</cites><orcidid>0000-0002-0977-3515 ; 0000000209773515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2317938795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2317938795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31767882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1578048$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Galda, Alexey</creatorcontrib><creatorcontrib>Vinokur, Valerii M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Exceptional points in classical spin dynamics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time (
P
T
)-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.</description><subject>639/301/119/2793</subject><subject>639/766/119/1001</subject><subject>Adiabatic</subject><subject>Asymmetry</subject><subject>Efficiency</subject><subject>Eigenvalues</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Phase transitions</subject><subject>Protocol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symmetry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9PFjEQxhsjEYJ8AQ7mDVy8rE7_bdsLCSEIJiRe4Nx0Z_tCyb7turOvkW9vYRHRg7200_nNM9M-jB1y-MRB2s-kuHa2Ae4aLZXWDbxhewKUboQU4u2r8y47ILqHurRwirt3bFdy0xprxR5rzn9iHOdUchhWY0l5plXKKxwCUcJ6R2MN-4ccNgnpPdtZh4HiwfO-z26-nF-fXTZX3y6-np1eNaiBz00LuleiBVSGywA9Rq175CBU4GstNErkznVWghBdr7tO9VFwHsK6VV2PWu6zk0V33HabWOvzPIXBj1PahOnBl5D835mc7vxt-eFba0wLrgocLQKF5uQJ0xzxDkvOEWfPtbGgbIU-PneZyvdtpNlvEmEchpBj2ZIXklsjW1C8osf_oPdlO9U_e6KMk9a4x7HFQuFUiKa4fpmYg390zS-u-eqaf3LNQy368PqtLyW_PaqAXACqqXwbpz-9_yP7C8-EoTU</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Galda, Alexey</creator><creator>Vinokur, Valerii M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0977-3515</orcidid><orcidid>https://orcid.org/0000000209773515</orcidid></search><sort><creationdate>20191125</creationdate><title>Exceptional points in classical spin dynamics</title><author>Galda, Alexey ; Vinokur, Valerii M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/2793</topic><topic>639/766/119/1001</topic><topic>Adiabatic</topic><topic>Asymmetry</topic><topic>Efficiency</topic><topic>Eigenvalues</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Phase transitions</topic><topic>Protocol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galda, Alexey</creatorcontrib><creatorcontrib>Vinokur, Valerii M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galda, Alexey</au><au>Vinokur, Valerii M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exceptional points in classical spin dynamics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-25</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>17484</spage><epage>7</epage><pages>17484-7</pages><artnum>17484</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time (
P
T
)-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31767882</pmid><doi>10.1038/s41598-019-53455-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0977-3515</orcidid><orcidid>https://orcid.org/0000000209773515</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-11, Vol.9 (1), p.17484-7, Article 17484 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6877609 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/2793 639/766/119/1001 Adiabatic Asymmetry Efficiency Eigenvalues Humanities and Social Sciences Magnetic fields MATERIALS SCIENCE multidisciplinary Optics Phase transitions Protocol Science Science (multidisciplinary) Symmetry |
title | Exceptional points in classical spin dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exceptional%20points%20in%20classical%20spin%20dynamics&rft.jtitle=Scientific%20reports&rft.au=Galda,%20Alexey&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-11-25&rft.volume=9&rft.issue=1&rft.spage=17484&rft.epage=7&rft.pages=17484-7&rft.artnum=17484&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-53455-0&rft_dat=%3Cproquest_pubme%3E2318736041%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-605d4260c4713a0dce55dc1024a1f525c3c199b83022bd5bb4de211aaf64bdc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2317938795&rft_id=info:pmid/31767882&rfr_iscdi=true |