Loading…

Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines

Abstract Many biomolecular machines need to be both fast and efficient. How has evolution optimized these machines along the tradeoff between speed and efficiency? We explore this question using optimizable dynamical models along coordinates that are plausible evolutionary degrees of freedom. Data o...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2019-12, Vol.36 (12), p.2813-2822
Main Authors: Wagoner, Jason A, Dill, Ken A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-5ca77d00d304b28c69f8aa6d2628df6e88f6da793dd52e4f0d4a420e857c79a3
cites cdi_FETCH-LOGICAL-c486t-5ca77d00d304b28c69f8aa6d2628df6e88f6da793dd52e4f0d4a420e857c79a3
container_end_page 2822
container_issue 12
container_start_page 2813
container_title Molecular biology and evolution
container_volume 36
creator Wagoner, Jason A
Dill, Ken A
description Abstract Many biomolecular machines need to be both fast and efficient. How has evolution optimized these machines along the tradeoff between speed and efficiency? We explore this question using optimizable dynamical models along coordinates that are plausible evolutionary degrees of freedom. Data on 11 motors and ion pumps are consistent with the hypothesis that evolution seeks an optimal balance of speed and efficiency, where any further small increase in one of these quantities would come at great expense to the other. For FoF1-ATPases in different species, we also find apparent optimization of the number of subunits in the c-ring, which determines the number of protons pumped per ATP synthesized. Interestingly, these ATPases appear to more optimized for efficiency than for speed, which can be rationalized through their key role as energy transducers in biology. The present modeling shows how the dynamical performance properties of biomolecular motors and pumps may have evolved to suit their corresponding biological actions.
doi_str_mv 10.1093/molbev/msz190
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6878954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msz190</oup_id><sourcerecordid>2318730790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-5ca77d00d304b28c69f8aa6d2628df6e88f6da793dd52e4f0d4a420e857c79a3</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMoun4cvUqOXqpJkybpRRBZP0BZwb2HbDJxI21Tm3ZB_3orq6uevMwMzI_3hnkIHVNyRknJzutYLWB1Xqd3WpItNKEFkxmVtNxGEyLHmROm9tB-Si-EUM6F2EV7jHKWE0knaD5r25hC84wfO0hpGAuOHj-1AA6bxuGp98EGaOwbvhmCA9wvAU9XsRr6EJtP9iFWYIfKdPjB2GVoIB2iHW-qBEdf_QDNr6fzq9vsfnZzd3V5n1muRJ8V1kjpCHGM8EWurCi9Mka4XOTKeQFKeeGMLJlzRQ7cE8cNzwmoQlpZGnaALtay7bCowVlo-s5Uuu1Cbbo3HU3QfzdNWOrnuNJCSVUWfBQ4_RLo4usAqdd1SBaqyjQQh6RzRpVkRJZkRLM1aruYUgd-Y0OJ_gxCr4PQ6yBG_uT3bRv6-_M_3nFo_9H6AJ2_li0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318730790</pqid></control><display><type>article</type><title>Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Wagoner, Jason A ; Dill, Ken A</creator><creatorcontrib>Wagoner, Jason A ; Dill, Ken A</creatorcontrib><description>Abstract Many biomolecular machines need to be both fast and efficient. How has evolution optimized these machines along the tradeoff between speed and efficiency? We explore this question using optimizable dynamical models along coordinates that are plausible evolutionary degrees of freedom. Data on 11 motors and ion pumps are consistent with the hypothesis that evolution seeks an optimal balance of speed and efficiency, where any further small increase in one of these quantities would come at great expense to the other. For FoF1-ATPases in different species, we also find apparent optimization of the number of subunits in the c-ring, which determines the number of protons pumped per ATP synthesized. Interestingly, these ATPases appear to more optimized for efficiency than for speed, which can be rationalized through their key role as energy transducers in biology. The present modeling shows how the dynamical performance properties of biomolecular motors and pumps may have evolved to suit their corresponding biological actions.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msz190</identifier><identifier>PMID: 31432071</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Discoveries ; Evolution, Molecular ; Models, Biological ; Proton-Translocating ATPases - metabolism</subject><ispartof>Molecular biology and evolution, 2019-12, Vol.36 (12), p.2813-2822</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-5ca77d00d304b28c69f8aa6d2628df6e88f6da793dd52e4f0d4a420e857c79a3</citedby><cites>FETCH-LOGICAL-c486t-5ca77d00d304b28c69f8aa6d2628df6e88f6da793dd52e4f0d4a420e857c79a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878954/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878954/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31432071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagoner, Jason A</creatorcontrib><creatorcontrib>Dill, Ken A</creatorcontrib><title>Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract Many biomolecular machines need to be both fast and efficient. How has evolution optimized these machines along the tradeoff between speed and efficiency? We explore this question using optimizable dynamical models along coordinates that are plausible evolutionary degrees of freedom. Data on 11 motors and ion pumps are consistent with the hypothesis that evolution seeks an optimal balance of speed and efficiency, where any further small increase in one of these quantities would come at great expense to the other. For FoF1-ATPases in different species, we also find apparent optimization of the number of subunits in the c-ring, which determines the number of protons pumped per ATP synthesized. Interestingly, these ATPases appear to more optimized for efficiency than for speed, which can be rationalized through their key role as energy transducers in biology. The present modeling shows how the dynamical performance properties of biomolecular motors and pumps may have evolved to suit their corresponding biological actions.</description><subject>Animals</subject><subject>Discoveries</subject><subject>Evolution, Molecular</subject><subject>Models, Biological</subject><subject>Proton-Translocating ATPases - metabolism</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkc1LxDAQxYMoun4cvUqOXqpJkybpRRBZP0BZwb2HbDJxI21Tm3ZB_3orq6uevMwMzI_3hnkIHVNyRknJzutYLWB1Xqd3WpItNKEFkxmVtNxGEyLHmROm9tB-Si-EUM6F2EV7jHKWE0knaD5r25hC84wfO0hpGAuOHj-1AA6bxuGp98EGaOwbvhmCA9wvAU9XsRr6EJtP9iFWYIfKdPjB2GVoIB2iHW-qBEdf_QDNr6fzq9vsfnZzd3V5n1muRJ8V1kjpCHGM8EWurCi9Mka4XOTKeQFKeeGMLJlzRQ7cE8cNzwmoQlpZGnaALtay7bCowVlo-s5Uuu1Cbbo3HU3QfzdNWOrnuNJCSVUWfBQ4_RLo4usAqdd1SBaqyjQQh6RzRpVkRJZkRLM1aruYUgd-Y0OJ_gxCr4PQ6yBG_uT3bRv6-_M_3nFo_9H6AJ2_li0</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Wagoner, Jason A</creator><creator>Dill, Ken A</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191201</creationdate><title>Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines</title><author>Wagoner, Jason A ; Dill, Ken A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-5ca77d00d304b28c69f8aa6d2628df6e88f6da793dd52e4f0d4a420e857c79a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Discoveries</topic><topic>Evolution, Molecular</topic><topic>Models, Biological</topic><topic>Proton-Translocating ATPases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagoner, Jason A</creatorcontrib><creatorcontrib>Dill, Ken A</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagoner, Jason A</au><au>Dill, Ken A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>36</volume><issue>12</issue><spage>2813</spage><epage>2822</epage><pages>2813-2822</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract Many biomolecular machines need to be both fast and efficient. How has evolution optimized these machines along the tradeoff between speed and efficiency? We explore this question using optimizable dynamical models along coordinates that are plausible evolutionary degrees of freedom. Data on 11 motors and ion pumps are consistent with the hypothesis that evolution seeks an optimal balance of speed and efficiency, where any further small increase in one of these quantities would come at great expense to the other. For FoF1-ATPases in different species, we also find apparent optimization of the number of subunits in the c-ring, which determines the number of protons pumped per ATP synthesized. Interestingly, these ATPases appear to more optimized for efficiency than for speed, which can be rationalized through their key role as energy transducers in biology. The present modeling shows how the dynamical performance properties of biomolecular motors and pumps may have evolved to suit their corresponding biological actions.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>31432071</pmid><doi>10.1093/molbev/msz190</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2019-12, Vol.36 (12), p.2813-2822
issn 0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6878954
source Open Access: PubMed Central; Open Access: Oxford University Press Open Journals; Full-Text Journals in Chemistry (Open access)
subjects Animals
Discoveries
Evolution, Molecular
Models, Biological
Proton-Translocating ATPases - metabolism
title Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opposing%20Pressures%20of%20Speed%20and%20Efficiency%20Guide%20the%20Evolution%20of%20Molecular%20Machines&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Wagoner,%20Jason%20A&rft.date=2019-12-01&rft.volume=36&rft.issue=12&rft.spage=2813&rft.epage=2822&rft.pages=2813-2822&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msz190&rft_dat=%3Cproquest_pubme%3E2318730790%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-5ca77d00d304b28c69f8aa6d2628df6e88f6da793dd52e4f0d4a420e857c79a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2318730790&rft_id=info:pmid/31432071&rft_oup_id=10.1093/molbev/msz190&rfr_iscdi=true