Loading…
Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity
Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolutio...
Saved in:
Published in: | Journal of structural biology 2016-04, Vol.194 (1), p.18-28 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903 |
---|---|
cites | cdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903 |
container_end_page | 28 |
container_issue | 1 |
container_start_page | 18 |
container_title | Journal of structural biology |
container_volume | 194 |
creator | Manjasetty, Babu A. Halavaty, Andrei S. Luan, Chi-Hao Osipiuk, Jerzy Mulligan, Rory Kwon, Keehwan Anderson, Wayne F. Joachimiak, Andrzej |
description | Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol. |
doi_str_mv | 10.1016/j.jsb.2016.01.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847716300077</els_id><sourcerecordid>1767622532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYO4uH_0A3iR4MlLt6l0J-lGEJZFd4WBBdFzSNLpmQw9yZikB_fbm57ZXfTiKRXyq1cv9RB6C6QGAvzjtt4mXdNS1gRqQroX6AJIz6qOM_FyqVtRda0Q5-gypS0hpAUKr9A55aLnhblA-1UI-yqHamMn9xvnqHxy2QWPncd5Y3HKcTZ5jhaHEe_mKbshzmsc7XqeVA4RX5v4Hat8hK1fBMyRXe4LWmnnB-fX2KiDyw-v0dmopmTfPJ5X6OfXLz9u7qrV_e23m-tVZVjb5UoZ3g_W9GRsRqZpYwHEyDUIA4S3PaOEGN6MVAOYVnOje9a1DVes12zsetJcoc8n3f2sd3YwR2uT3Ee3U_FBBuXkvy_ebeQ6HCTvyvYoLwLvTwIhZSeTcdmajQneW5MlNLRpKCvQh8cpMfyabcpy55Kx06S8DXOSILjgtIC0oHBCTQwpRTs-ewEilzjlVpY45RKnJCBLnKXn3d-feO54yq8An06ALas8OBsXo7YkMLi4-ByC-4_8H0HssiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767622532</pqid></control><display><type>article</type><title>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Manjasetty, Babu A. ; Halavaty, Andrei S. ; Luan, Chi-Hao ; Osipiuk, Jerzy ; Mulligan, Rory ; Kwon, Keehwan ; Anderson, Wayne F. ; Joachimiak, Andrzej</creator><creatorcontrib>Manjasetty, Babu A. ; Halavaty, Andrei S. ; Luan, Chi-Hao ; Osipiuk, Jerzy ; Mulligan, Rory ; Kwon, Keehwan ; Anderson, Wayne F. ; Joachimiak, Andrzej ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2016.01.008</identifier><identifier>PMID: 26796657</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Loop-to-helix transition ; Models, Molecular ; Multidrug resistance ; Protein Binding ; Protein Domains ; Protein Structure, Secondary ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Salmonella typhimurium - genetics ; Salmonella typhimurium - metabolism ; Sequence Homology, Nucleic Acid ; TetR/AcrR ; Transcription regulator</subject><ispartof>Journal of structural biology, 2016-04, Vol.194 (1), p.18-28</ispartof><rights>2016</rights><rights>Copyright © 2016. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</citedby><cites>FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</cites><orcidid>0000-0002-8229-4748 ; 0000000282294748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26796657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1323325$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Manjasetty, Babu A.</creatorcontrib><creatorcontrib>Halavaty, Andrei S.</creatorcontrib><creatorcontrib>Luan, Chi-Hao</creatorcontrib><creatorcontrib>Osipiuk, Jerzy</creatorcontrib><creatorcontrib>Mulligan, Rory</creatorcontrib><creatorcontrib>Kwon, Keehwan</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Hydrogen Bonding</subject><subject>Ligands</subject><subject>Loop-to-helix transition</subject><subject>Models, Molecular</subject><subject>Multidrug resistance</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure, Secondary</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - metabolism</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>TetR/AcrR</subject><subject>Transcription regulator</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU-LFDEQxYO4uH_0A3iR4MlLt6l0J-lGEJZFd4WBBdFzSNLpmQw9yZikB_fbm57ZXfTiKRXyq1cv9RB6C6QGAvzjtt4mXdNS1gRqQroX6AJIz6qOM_FyqVtRda0Q5-gypS0hpAUKr9A55aLnhblA-1UI-yqHamMn9xvnqHxy2QWPncd5Y3HKcTZ5jhaHEe_mKbshzmsc7XqeVA4RX5v4Hat8hK1fBMyRXe4LWmnnB-fX2KiDyw-v0dmopmTfPJ5X6OfXLz9u7qrV_e23m-tVZVjb5UoZ3g_W9GRsRqZpYwHEyDUIA4S3PaOEGN6MVAOYVnOje9a1DVes12zsetJcoc8n3f2sd3YwR2uT3Ee3U_FBBuXkvy_ebeQ6HCTvyvYoLwLvTwIhZSeTcdmajQneW5MlNLRpKCvQh8cpMfyabcpy55Kx06S8DXOSILjgtIC0oHBCTQwpRTs-ewEilzjlVpY45RKnJCBLnKXn3d-feO54yq8An06ALas8OBsXo7YkMLi4-ByC-4_8H0HssiQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Manjasetty, Babu A.</creator><creator>Halavaty, Andrei S.</creator><creator>Luan, Chi-Hao</creator><creator>Osipiuk, Jerzy</creator><creator>Mulligan, Rory</creator><creator>Kwon, Keehwan</creator><creator>Anderson, Wayne F.</creator><creator>Joachimiak, Andrzej</creator><general>Elsevier Inc</general><general>Elseiver</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8229-4748</orcidid><orcidid>https://orcid.org/0000000282294748</orcidid></search><sort><creationdate>20160401</creationdate><title>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</title><author>Manjasetty, Babu A. ; Halavaty, Andrei S. ; Luan, Chi-Hao ; Osipiuk, Jerzy ; Mulligan, Rory ; Kwon, Keehwan ; Anderson, Wayne F. ; Joachimiak, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Hydrogen Bonding</topic><topic>Ligands</topic><topic>Loop-to-helix transition</topic><topic>Models, Molecular</topic><topic>Multidrug resistance</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure, Secondary</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - metabolism</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>TetR/AcrR</topic><topic>Transcription regulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manjasetty, Babu A.</creatorcontrib><creatorcontrib>Halavaty, Andrei S.</creatorcontrib><creatorcontrib>Luan, Chi-Hao</creatorcontrib><creatorcontrib>Osipiuk, Jerzy</creatorcontrib><creatorcontrib>Mulligan, Rory</creatorcontrib><creatorcontrib>Kwon, Keehwan</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjasetty, Babu A.</au><au>Halavaty, Andrei S.</au><au>Luan, Chi-Hao</au><au>Osipiuk, Jerzy</au><au>Mulligan, Rory</au><au>Kwon, Keehwan</au><au>Anderson, Wayne F.</au><au>Joachimiak, Andrzej</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>194</volume><issue>1</issue><spage>18</spage><epage>28</epage><pages>18-28</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26796657</pmid><doi>10.1016/j.jsb.2016.01.008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8229-4748</orcidid><orcidid>https://orcid.org/0000000282294748</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8477 |
ispartof | Journal of structural biology, 2016-04, Vol.194 (1), p.18-28 |
issn | 1047-8477 1095-8657 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886526 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Amino Acid Sequence Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Binding Sites Cloning, Molecular Crystallography, X-Ray Hydrogen Bonding Ligands Loop-to-helix transition Models, Molecular Multidrug resistance Protein Binding Protein Domains Protein Structure, Secondary Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism Salmonella typhimurium - genetics Salmonella typhimurium - metabolism Sequence Homology, Nucleic Acid TetR/AcrR Transcription regulator |
title | Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loop-to-helix%20transition%20in%20the%20structure%20of%20multidrug%20regulator%20AcrR%20at%20the%20entrance%20of%20the%20drug-binding%20cavity&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Manjasetty,%20Babu%20A.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-04-01&rft.volume=194&rft.issue=1&rft.spage=18&rft.epage=28&rft.pages=18-28&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2016.01.008&rft_dat=%3Cproquest_pubme%3E1767622532%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767622532&rft_id=info:pmid/26796657&rfr_iscdi=true |