Loading…

Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity

Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolutio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of structural biology 2016-04, Vol.194 (1), p.18-28
Main Authors: Manjasetty, Babu A., Halavaty, Andrei S., Luan, Chi-Hao, Osipiuk, Jerzy, Mulligan, Rory, Kwon, Keehwan, Anderson, Wayne F., Joachimiak, Andrzej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903
cites cdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903
container_end_page 28
container_issue 1
container_start_page 18
container_title Journal of structural biology
container_volume 194
creator Manjasetty, Babu A.
Halavaty, Andrei S.
Luan, Chi-Hao
Osipiuk, Jerzy
Mulligan, Rory
Kwon, Keehwan
Anderson, Wayne F.
Joachimiak, Andrzej
description Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.
doi_str_mv 10.1016/j.jsb.2016.01.008
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847716300077</els_id><sourcerecordid>1767622532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYO4uH_0A3iR4MlLt6l0J-lGEJZFd4WBBdFzSNLpmQw9yZikB_fbm57ZXfTiKRXyq1cv9RB6C6QGAvzjtt4mXdNS1gRqQroX6AJIz6qOM_FyqVtRda0Q5-gypS0hpAUKr9A55aLnhblA-1UI-yqHamMn9xvnqHxy2QWPncd5Y3HKcTZ5jhaHEe_mKbshzmsc7XqeVA4RX5v4Hat8hK1fBMyRXe4LWmnnB-fX2KiDyw-v0dmopmTfPJ5X6OfXLz9u7qrV_e23m-tVZVjb5UoZ3g_W9GRsRqZpYwHEyDUIA4S3PaOEGN6MVAOYVnOje9a1DVes12zsetJcoc8n3f2sd3YwR2uT3Ee3U_FBBuXkvy_ebeQ6HCTvyvYoLwLvTwIhZSeTcdmajQneW5MlNLRpKCvQh8cpMfyabcpy55Kx06S8DXOSILjgtIC0oHBCTQwpRTs-ewEilzjlVpY45RKnJCBLnKXn3d-feO54yq8An06ALas8OBsXo7YkMLi4-ByC-4_8H0HssiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767622532</pqid></control><display><type>article</type><title>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Manjasetty, Babu A. ; Halavaty, Andrei S. ; Luan, Chi-Hao ; Osipiuk, Jerzy ; Mulligan, Rory ; Kwon, Keehwan ; Anderson, Wayne F. ; Joachimiak, Andrzej</creator><creatorcontrib>Manjasetty, Babu A. ; Halavaty, Andrei S. ; Luan, Chi-Hao ; Osipiuk, Jerzy ; Mulligan, Rory ; Kwon, Keehwan ; Anderson, Wayne F. ; Joachimiak, Andrzej ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2016.01.008</identifier><identifier>PMID: 26796657</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Loop-to-helix transition ; Models, Molecular ; Multidrug resistance ; Protein Binding ; Protein Domains ; Protein Structure, Secondary ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Salmonella typhimurium - genetics ; Salmonella typhimurium - metabolism ; Sequence Homology, Nucleic Acid ; TetR/AcrR ; Transcription regulator</subject><ispartof>Journal of structural biology, 2016-04, Vol.194 (1), p.18-28</ispartof><rights>2016</rights><rights>Copyright © 2016. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</citedby><cites>FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</cites><orcidid>0000-0002-8229-4748 ; 0000000282294748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26796657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1323325$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Manjasetty, Babu A.</creatorcontrib><creatorcontrib>Halavaty, Andrei S.</creatorcontrib><creatorcontrib>Luan, Chi-Hao</creatorcontrib><creatorcontrib>Osipiuk, Jerzy</creatorcontrib><creatorcontrib>Mulligan, Rory</creatorcontrib><creatorcontrib>Kwon, Keehwan</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Hydrogen Bonding</subject><subject>Ligands</subject><subject>Loop-to-helix transition</subject><subject>Models, Molecular</subject><subject>Multidrug resistance</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure, Secondary</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - metabolism</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>TetR/AcrR</subject><subject>Transcription regulator</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU-LFDEQxYO4uH_0A3iR4MlLt6l0J-lGEJZFd4WBBdFzSNLpmQw9yZikB_fbm57ZXfTiKRXyq1cv9RB6C6QGAvzjtt4mXdNS1gRqQroX6AJIz6qOM_FyqVtRda0Q5-gypS0hpAUKr9A55aLnhblA-1UI-yqHamMn9xvnqHxy2QWPncd5Y3HKcTZ5jhaHEe_mKbshzmsc7XqeVA4RX5v4Hat8hK1fBMyRXe4LWmnnB-fX2KiDyw-v0dmopmTfPJ5X6OfXLz9u7qrV_e23m-tVZVjb5UoZ3g_W9GRsRqZpYwHEyDUIA4S3PaOEGN6MVAOYVnOje9a1DVes12zsetJcoc8n3f2sd3YwR2uT3Ee3U_FBBuXkvy_ebeQ6HCTvyvYoLwLvTwIhZSeTcdmajQneW5MlNLRpKCvQh8cpMfyabcpy55Kx06S8DXOSILjgtIC0oHBCTQwpRTs-ewEilzjlVpY45RKnJCBLnKXn3d-feO54yq8An06ALas8OBsXo7YkMLi4-ByC-4_8H0HssiQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Manjasetty, Babu A.</creator><creator>Halavaty, Andrei S.</creator><creator>Luan, Chi-Hao</creator><creator>Osipiuk, Jerzy</creator><creator>Mulligan, Rory</creator><creator>Kwon, Keehwan</creator><creator>Anderson, Wayne F.</creator><creator>Joachimiak, Andrzej</creator><general>Elsevier Inc</general><general>Elseiver</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8229-4748</orcidid><orcidid>https://orcid.org/0000000282294748</orcidid></search><sort><creationdate>20160401</creationdate><title>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</title><author>Manjasetty, Babu A. ; Halavaty, Andrei S. ; Luan, Chi-Hao ; Osipiuk, Jerzy ; Mulligan, Rory ; Kwon, Keehwan ; Anderson, Wayne F. ; Joachimiak, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Hydrogen Bonding</topic><topic>Ligands</topic><topic>Loop-to-helix transition</topic><topic>Models, Molecular</topic><topic>Multidrug resistance</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure, Secondary</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - metabolism</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>TetR/AcrR</topic><topic>Transcription regulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manjasetty, Babu A.</creatorcontrib><creatorcontrib>Halavaty, Andrei S.</creatorcontrib><creatorcontrib>Luan, Chi-Hao</creatorcontrib><creatorcontrib>Osipiuk, Jerzy</creatorcontrib><creatorcontrib>Mulligan, Rory</creatorcontrib><creatorcontrib>Kwon, Keehwan</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjasetty, Babu A.</au><au>Halavaty, Andrei S.</au><au>Luan, Chi-Hao</au><au>Osipiuk, Jerzy</au><au>Mulligan, Rory</au><au>Kwon, Keehwan</au><au>Anderson, Wayne F.</au><au>Joachimiak, Andrzej</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>194</volume><issue>1</issue><spage>18</spage><epage>28</epage><pages>18-28</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26796657</pmid><doi>10.1016/j.jsb.2016.01.008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8229-4748</orcidid><orcidid>https://orcid.org/0000000282294748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2016-04, Vol.194 (1), p.18-28
issn 1047-8477
1095-8657
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6886526
source ScienceDirect Freedom Collection 2022-2024
subjects Amino Acid Sequence
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Binding Sites
Cloning, Molecular
Crystallography, X-Ray
Hydrogen Bonding
Ligands
Loop-to-helix transition
Models, Molecular
Multidrug resistance
Protein Binding
Protein Domains
Protein Structure, Secondary
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Salmonella typhimurium - genetics
Salmonella typhimurium - metabolism
Sequence Homology, Nucleic Acid
TetR/AcrR
Transcription regulator
title Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loop-to-helix%20transition%20in%20the%20structure%20of%20multidrug%20regulator%20AcrR%20at%20the%20entrance%20of%20the%20drug-binding%20cavity&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Manjasetty,%20Babu%20A.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-04-01&rft.volume=194&rft.issue=1&rft.spage=18&rft.epage=28&rft.pages=18-28&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2016.01.008&rft_dat=%3Cproquest_pubme%3E1767622532%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c548t-ac69dec90f3f5b23e117f6b17c106495200c63f2b11c4b6cb958436a59b5f8903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767622532&rft_id=info:pmid/26796657&rfr_iscdi=true