Loading…
Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer
The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforc...
Saved in:
Published in: | Materials 2019-11, Vol.12 (22), p.3790 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583 |
container_end_page | |
container_issue | 22 |
container_start_page | 3790 |
container_title | Materials |
container_volume | 12 |
creator | Wang, Xiaomeng Petrů, Michal Ai, Jun Ou, Shikun |
description | The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength. |
doi_str_mv | 10.3390/ma12223790 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548721947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</originalsourceid><addsrcrecordid>eNpdkV1LHDEUhkNRqqze9AeUgd6IsDUfk0xyU9ClakFw6cd1yGROdiMziU1mtPvvzaL1KzcJ5zx5z3nPQegTwV8ZU_hkMIRSyhqFP6B9opSYE1XXO6_ee-gw5xtcDmNEUvUR7THS8PKJ7qPV0iQzwJi8rX6NU7epoqvOe_g3JdOXSIKwGtcQfFhtM4sYbIIRqjMwQ67u_biulgly4XKGrrrctMl31U_wwcVkS2QZ-80A6QDtOtNnOHy6Z-jP-fffi8v51fXFj8Xp1dzWWIxz2lIBXc0bRzi21DmquHSqBUcEVS0zzknJmWCYdhKL2kkLLeGuBstbwyWboW-PurdTO0BnIYzFiL5NfjBpo6Px-m0m-LVexTstpJSC0CJw9CSQ4t-pONODzxb63gSIU9Z0OzslSqmCfnmH3sQphWJPU17LhpbpN4U6fqRsijkncM_NEKy3K9QvKyzw59ftP6P_F8YeALndl_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548721947</pqid></control><display><type>article</type><title>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</title><source>Open Access: PubMed Central</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Wang, Xiaomeng ; Petrů, Michal ; Ai, Jun ; Ou, Shikun</creator><creatorcontrib>Wang, Xiaomeng ; Petrů, Michal ; Ai, Jun ; Ou, Shikun</creatorcontrib><description>The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12223790</identifier><identifier>PMID: 31752232</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon fibers ; Concrete ; Debonding ; Ductility ; Ductility tests ; Elastoplasticity ; Failure modes ; Fiber reinforced concretes ; Fiber reinforced polymers ; Glass fiber reinforced plastics ; Glass fibers ; Mathematical models ; Mechanical properties ; Parametric statistics ; Polymers ; Porous materials ; Prestressing ; Reinforced concrete ; Reinforcing steels ; Shear stress ; Simulation ; Stiffness ; Strengthening ; Stress concentration ; Ultimate tensile strength</subject><ispartof>Materials, 2019-11, Vol.12 (22), p.3790</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</citedby><cites>FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548721947/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548721947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31752232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Petrů, Michal</creatorcontrib><creatorcontrib>Ai, Jun</creatorcontrib><creatorcontrib>Ou, Shikun</creatorcontrib><title>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength.</description><subject>Carbon fibers</subject><subject>Concrete</subject><subject>Debonding</subject><subject>Ductility</subject><subject>Ductility tests</subject><subject>Elastoplasticity</subject><subject>Failure modes</subject><subject>Fiber reinforced concretes</subject><subject>Fiber reinforced polymers</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Parametric statistics</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Prestressing</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Stiffness</subject><subject>Strengthening</subject><subject>Stress concentration</subject><subject>Ultimate tensile strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV1LHDEUhkNRqqze9AeUgd6IsDUfk0xyU9ClakFw6cd1yGROdiMziU1mtPvvzaL1KzcJ5zx5z3nPQegTwV8ZU_hkMIRSyhqFP6B9opSYE1XXO6_ee-gw5xtcDmNEUvUR7THS8PKJ7qPV0iQzwJi8rX6NU7epoqvOe_g3JdOXSIKwGtcQfFhtM4sYbIIRqjMwQ67u_biulgly4XKGrrrctMl31U_wwcVkS2QZ-80A6QDtOtNnOHy6Z-jP-fffi8v51fXFj8Xp1dzWWIxz2lIBXc0bRzi21DmquHSqBUcEVS0zzknJmWCYdhKL2kkLLeGuBstbwyWboW-PurdTO0BnIYzFiL5NfjBpo6Px-m0m-LVexTstpJSC0CJw9CSQ4t-pONODzxb63gSIU9Z0OzslSqmCfnmH3sQphWJPU17LhpbpN4U6fqRsijkncM_NEKy3K9QvKyzw59ftP6P_F8YeALndl_g</recordid><startdate>20191118</startdate><enddate>20191118</enddate><creator>Wang, Xiaomeng</creator><creator>Petrů, Michal</creator><creator>Ai, Jun</creator><creator>Ou, Shikun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191118</creationdate><title>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</title><author>Wang, Xiaomeng ; Petrů, Michal ; Ai, Jun ; Ou, Shikun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon fibers</topic><topic>Concrete</topic><topic>Debonding</topic><topic>Ductility</topic><topic>Ductility tests</topic><topic>Elastoplasticity</topic><topic>Failure modes</topic><topic>Fiber reinforced concretes</topic><topic>Fiber reinforced polymers</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Parametric statistics</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Prestressing</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Stiffness</topic><topic>Strengthening</topic><topic>Stress concentration</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Petrů, Michal</creatorcontrib><creatorcontrib>Ai, Jun</creatorcontrib><creatorcontrib>Ou, Shikun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaomeng</au><au>Petrů, Michal</au><au>Ai, Jun</au><au>Ou, Shikun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-11-18</date><risdate>2019</risdate><volume>12</volume><issue>22</issue><spage>3790</spage><pages>3790-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31752232</pmid><doi>10.3390/ma12223790</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-11, Vol.12 (22), p.3790 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888612 |
source | Open Access: PubMed Central; Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest) |
subjects | Carbon fibers Concrete Debonding Ductility Ductility tests Elastoplasticity Failure modes Fiber reinforced concretes Fiber reinforced polymers Glass fiber reinforced plastics Glass fibers Mathematical models Mechanical properties Parametric statistics Polymers Porous materials Prestressing Reinforced concrete Reinforcing steels Shear stress Simulation Stiffness Strengthening Stress concentration Ultimate tensile strength |
title | Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Study%20of%20Flexural%20Strengthening%20of%20Concrete%20Beams%20with%20Prestressed%20Hybrid%20Reinforced%20Polymer&rft.jtitle=Materials&rft.au=Wang,%20Xiaomeng&rft.date=2019-11-18&rft.volume=12&rft.issue=22&rft.spage=3790&rft.pages=3790-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12223790&rft_dat=%3Cproquest_pubme%3E2548721947%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548721947&rft_id=info:pmid/31752232&rfr_iscdi=true |