Loading…

Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer

The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforc...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2019-11, Vol.12 (22), p.3790
Main Authors: Wang, Xiaomeng, Petrů, Michal, Ai, Jun, Ou, Shikun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583
cites cdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583
container_end_page
container_issue 22
container_start_page 3790
container_title Materials
container_volume 12
creator Wang, Xiaomeng
Petrů, Michal
Ai, Jun
Ou, Shikun
description The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength.
doi_str_mv 10.3390/ma12223790
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548721947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</originalsourceid><addsrcrecordid>eNpdkV1LHDEUhkNRqqze9AeUgd6IsDUfk0xyU9ClakFw6cd1yGROdiMziU1mtPvvzaL1KzcJ5zx5z3nPQegTwV8ZU_hkMIRSyhqFP6B9opSYE1XXO6_ee-gw5xtcDmNEUvUR7THS8PKJ7qPV0iQzwJi8rX6NU7epoqvOe_g3JdOXSIKwGtcQfFhtM4sYbIIRqjMwQ67u_biulgly4XKGrrrctMl31U_wwcVkS2QZ-80A6QDtOtNnOHy6Z-jP-fffi8v51fXFj8Xp1dzWWIxz2lIBXc0bRzi21DmquHSqBUcEVS0zzknJmWCYdhKL2kkLLeGuBstbwyWboW-PurdTO0BnIYzFiL5NfjBpo6Px-m0m-LVexTstpJSC0CJw9CSQ4t-pONODzxb63gSIU9Z0OzslSqmCfnmH3sQphWJPU17LhpbpN4U6fqRsijkncM_NEKy3K9QvKyzw59ftP6P_F8YeALndl_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548721947</pqid></control><display><type>article</type><title>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</title><source>Open Access: PubMed Central</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Wang, Xiaomeng ; Petrů, Michal ; Ai, Jun ; Ou, Shikun</creator><creatorcontrib>Wang, Xiaomeng ; Petrů, Michal ; Ai, Jun ; Ou, Shikun</creatorcontrib><description>The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12223790</identifier><identifier>PMID: 31752232</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon fibers ; Concrete ; Debonding ; Ductility ; Ductility tests ; Elastoplasticity ; Failure modes ; Fiber reinforced concretes ; Fiber reinforced polymers ; Glass fiber reinforced plastics ; Glass fibers ; Mathematical models ; Mechanical properties ; Parametric statistics ; Polymers ; Porous materials ; Prestressing ; Reinforced concrete ; Reinforcing steels ; Shear stress ; Simulation ; Stiffness ; Strengthening ; Stress concentration ; Ultimate tensile strength</subject><ispartof>Materials, 2019-11, Vol.12 (22), p.3790</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</citedby><cites>FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548721947/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548721947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31752232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Petrů, Michal</creatorcontrib><creatorcontrib>Ai, Jun</creatorcontrib><creatorcontrib>Ou, Shikun</creatorcontrib><title>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength.</description><subject>Carbon fibers</subject><subject>Concrete</subject><subject>Debonding</subject><subject>Ductility</subject><subject>Ductility tests</subject><subject>Elastoplasticity</subject><subject>Failure modes</subject><subject>Fiber reinforced concretes</subject><subject>Fiber reinforced polymers</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Parametric statistics</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Prestressing</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Stiffness</subject><subject>Strengthening</subject><subject>Stress concentration</subject><subject>Ultimate tensile strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV1LHDEUhkNRqqze9AeUgd6IsDUfk0xyU9ClakFw6cd1yGROdiMziU1mtPvvzaL1KzcJ5zx5z3nPQegTwV8ZU_hkMIRSyhqFP6B9opSYE1XXO6_ee-gw5xtcDmNEUvUR7THS8PKJ7qPV0iQzwJi8rX6NU7epoqvOe_g3JdOXSIKwGtcQfFhtM4sYbIIRqjMwQ67u_biulgly4XKGrrrctMl31U_wwcVkS2QZ-80A6QDtOtNnOHy6Z-jP-fffi8v51fXFj8Xp1dzWWIxz2lIBXc0bRzi21DmquHSqBUcEVS0zzknJmWCYdhKL2kkLLeGuBstbwyWboW-PurdTO0BnIYzFiL5NfjBpo6Px-m0m-LVexTstpJSC0CJw9CSQ4t-pONODzxb63gSIU9Z0OzslSqmCfnmH3sQphWJPU17LhpbpN4U6fqRsijkncM_NEKy3K9QvKyzw59ftP6P_F8YeALndl_g</recordid><startdate>20191118</startdate><enddate>20191118</enddate><creator>Wang, Xiaomeng</creator><creator>Petrů, Michal</creator><creator>Ai, Jun</creator><creator>Ou, Shikun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191118</creationdate><title>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</title><author>Wang, Xiaomeng ; Petrů, Michal ; Ai, Jun ; Ou, Shikun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon fibers</topic><topic>Concrete</topic><topic>Debonding</topic><topic>Ductility</topic><topic>Ductility tests</topic><topic>Elastoplasticity</topic><topic>Failure modes</topic><topic>Fiber reinforced concretes</topic><topic>Fiber reinforced polymers</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Parametric statistics</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Prestressing</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Stiffness</topic><topic>Strengthening</topic><topic>Stress concentration</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Petrů, Michal</creatorcontrib><creatorcontrib>Ai, Jun</creatorcontrib><creatorcontrib>Ou, Shikun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaomeng</au><au>Petrů, Michal</au><au>Ai, Jun</au><au>Ou, Shikun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-11-18</date><risdate>2019</risdate><volume>12</volume><issue>22</issue><spage>3790</spage><pages>3790-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The strengthening method of using hybrid fiber reinforced polymer is an effective way to increase the strengthening efficiency and lower the cost. This paper focuses on simulating the flexural behavior of reinforced concrete beam strengthened by prestressed C/GFRP (Carbon-Glass hybrid Fiber Reinforced Polymer) with different hybrid ratios and prestress levels. An elastoplastic damage constitution is used to simulate the mechanical behavior of concrete. A cohesive zone model under mixed mode is adopted to describe the debonding behavior of the FRP-concrete and concrete-steel interface. The results show good agreement with the experiment in the load-deflection curve, load-stress curve of steel, and HFRP. Furthermore, the failure mode of concrete and FRP debonding obtained from numerical simulation is the same as the test. Considering the improvement of the bending capacity, stiffness, and ductility of the strengthened beam in this paper, the best hybrid ratio of carbon to glass fiber is 1:1, and the suitable prestress level is between 30 and 50% of its ultimate strength.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31752232</pmid><doi>10.3390/ma12223790</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-11, Vol.12 (22), p.3790
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6888612
source Open Access: PubMed Central; Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest)
subjects Carbon fibers
Concrete
Debonding
Ductility
Ductility tests
Elastoplasticity
Failure modes
Fiber reinforced concretes
Fiber reinforced polymers
Glass fiber reinforced plastics
Glass fibers
Mathematical models
Mechanical properties
Parametric statistics
Polymers
Porous materials
Prestressing
Reinforced concrete
Reinforcing steels
Shear stress
Simulation
Stiffness
Strengthening
Stress concentration
Ultimate tensile strength
title Parametric Study of Flexural Strengthening of Concrete Beams with Prestressed Hybrid Reinforced Polymer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Study%20of%20Flexural%20Strengthening%20of%20Concrete%20Beams%20with%20Prestressed%20Hybrid%20Reinforced%20Polymer&rft.jtitle=Materials&rft.au=Wang,%20Xiaomeng&rft.date=2019-11-18&rft.volume=12&rft.issue=22&rft.spage=3790&rft.pages=3790-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12223790&rft_dat=%3Cproquest_pubme%3E2548721947%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-2b26ed457f150c2ff2958f9bef1629b3aff88536302d8064f8ceb15f4ec5ba583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548721947&rft_id=info:pmid/31752232&rfr_iscdi=true