Loading…
The Characteristics of Absorbency Under Load (AUL) for Superabsorbent and Soil Mixtures
Various applications of superabsorbent polymers (SAP) include the use of these materials in agriculture and environmental engineering to increase soil water retention. Under such conditions, there is water absorption of the SAP in soil under load. This paper presents the results of absorbency under...
Saved in:
Published in: | Scientific reports 2019-12, Vol.9 (1), p.18098-9, Article 18098 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Various applications of superabsorbent polymers (SAP) include the use of these materials in agriculture and environmental engineering to increase soil water retention. Under such conditions, there is water absorption of the SAP in soil under load. This paper presents the results of absorbency under load (AUL) of a cross-linked copolymer of acrylamide and potassium acrylate mixed at ratios of 0.3%, 0.5% and 1.0% with coarse sand and sandy loam. The mixtures were subjected to loads equivalent to 10, 20 and 40 cm of soil. The highest differences in AUL values for both soils, compared to the control sample, were obtained after 24 hours and at a maximum load of 5.9 kPa, which corresponds to a load of a 40 cm thick topsoil layer. The AUL was 71.4 g∙g
−1
for coarse sand and 52.7 g∙g
−1
for sandy loam with a 1.0% SAP addition, which corresponded to 24.0% and 18.0%, respectively, of the absorption in the control sample. All the conducted tests revealed a significantly low rate of water absorbency, which is especially important for capturing the water that infiltrates into the soil profile. The results demonstrate that water absorption by SAPs decreased with the increase in SAP addition. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-54744-4 |