Loading…

Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel

Endometrial Cancer (EC) is one of the most common malignancies in women in developed countries. Molecular characterization of different biotypes may improve clinical management of EC. The Cancer Genome Atlas (TCGA) project has revealed four prognostic EC subgroups: POLE, MSI; Copy Number Low (CNL) a...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-12, Vol.9 (1), p.18093-9, Article 18093
Main Authors: López-Reig, Raquel, Fernández-Serra, Antonio, Romero, Ignacio, Zorrero, Cristina, Illueca, Carmen, García-Casado, Zaida, Poveda, Andrés, López-Guerrero, José Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-8092df699d80a8e25ed531465639d5df01e71a20ed69f3343862de1fc674d1c43
cites cdi_FETCH-LOGICAL-c540t-8092df699d80a8e25ed531465639d5df01e71a20ed69f3343862de1fc674d1c43
container_end_page 9
container_issue 1
container_start_page 18093
container_title Scientific reports
container_volume 9
creator López-Reig, Raquel
Fernández-Serra, Antonio
Romero, Ignacio
Zorrero, Cristina
Illueca, Carmen
García-Casado, Zaida
Poveda, Andrés
López-Guerrero, José Antonio
description Endometrial Cancer (EC) is one of the most common malignancies in women in developed countries. Molecular characterization of different biotypes may improve clinical management of EC. The Cancer Genome Atlas (TCGA) project has revealed four prognostic EC subgroups: POLE, MSI; Copy Number Low (CNL) and Copy Number High (CNH). The goal of this study was to develop a method to classify tumors in any of the four EC prognostic groups using affordable molecular techniques. Ninety-six Formalin-Fixed Paraffin-embedded (FFPE) samples were sequenced following a NGS TruSeq Custom Amplicon low input (Illumina) protocol interrogating a multi-gene panel. MSI analysis was performed by fragment analysis using eight specific microsatellite markers. A Random Forest classification algorithm (RFA), considering NGS results, was developed to stratify EC patients into different prognostic groups. Our approach correctly classifies the EC patients into the four TCGA prognostic biotypes. The RFA assigned the samples to the CNH and CNL groups with an accuracy of 0.9753 (p 
doi_str_mv 10.1038/s41598-019-54624-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6889294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320871880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-8092df699d80a8e25ed531465639d5df01e71a20ed69f3343862de1fc674d1c43</originalsourceid><addsrcrecordid>eNp9kU1PFjEUhRujEYL8ARemiRs3o_2ct92YGCJgQpREXTelvTMUO-3YziD8ewovIrqwmza5zz235x6EXlLylhKu3lVBpVYdobqTomeiu3qCdhkRsmOcsaeP3jtov9YL0o5kWlD9HO1wutGMS7WLfpyWPKZcl-Cwi7bWMARnl5ATzgOG5PMESwk2YmeTg4LXGtKILZ5yBLdGW7Cd55KtO8dntoLHrdPi5RfES-hGSIA_H33Fs00QX6Bng40V9u_vPfT98OO3g-Pu5MvRp4MPJ52TgiydIpr5odfaK2IVMAlecip62XPtpR8IhQ21jIDv9cC54KpnHujg-o3w1Am-h95vdef1bALvIC3FRjOXMNlybbIN5u9KCudmzJemV0q3FTWBN_cCJf9coS5mCtVBjM1FXqtpWyVqQ5UiDX39D3qR15KavVuKMiqk1I1iW8qVXGuB4eEzlJjbOM02TtPiNHdxmqvW9OqxjYeW3-E1gG-B2kpphPJn9n9kbwAqTKxy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321214559</pqid></control><display><type>article</type><title>Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>López-Reig, Raquel ; Fernández-Serra, Antonio ; Romero, Ignacio ; Zorrero, Cristina ; Illueca, Carmen ; García-Casado, Zaida ; Poveda, Andrés ; López-Guerrero, José Antonio</creator><creatorcontrib>López-Reig, Raquel ; Fernández-Serra, Antonio ; Romero, Ignacio ; Zorrero, Cristina ; Illueca, Carmen ; García-Casado, Zaida ; Poveda, Andrés ; López-Guerrero, José Antonio</creatorcontrib><description>Endometrial Cancer (EC) is one of the most common malignancies in women in developed countries. Molecular characterization of different biotypes may improve clinical management of EC. The Cancer Genome Atlas (TCGA) project has revealed four prognostic EC subgroups: POLE, MSI; Copy Number Low (CNL) and Copy Number High (CNH). The goal of this study was to develop a method to classify tumors in any of the four EC prognostic groups using affordable molecular techniques. Ninety-six Formalin-Fixed Paraffin-embedded (FFPE) samples were sequenced following a NGS TruSeq Custom Amplicon low input (Illumina) protocol interrogating a multi-gene panel. MSI analysis was performed by fragment analysis using eight specific microsatellite markers. A Random Forest classification algorithm (RFA), considering NGS results, was developed to stratify EC patients into different prognostic groups. Our approach correctly classifies the EC patients into the four TCGA prognostic biotypes. The RFA assigned the samples to the CNH and CNL groups with an accuracy of 0.9753 (p &lt; 0.001). The prognostic value of these groups was prospectively reproduced on our series both for Disease-Free Survival (p = 0.004) and Overall Survival (p = 0.030).Hence, with the molecular approach herein described, a precise and suitable tool that mimics the prognostic EC subtypes has been solved and validated. Procedure that might be introduced into routine diagnostic practices.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-54624-x</identifier><identifier>PMID: 31792358</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/22 ; 45/23 ; 692/4017 ; 692/4028/67/1517/1931 ; 692/53/2422 ; Artificial Intelligence ; Biotypes ; Cancer ; Classification ; Copy number ; Developed countries ; Endometrial cancer ; Endometrial Neoplasms - diagnosis ; Endometrial Neoplasms - genetics ; Endometrium ; Female ; Genetic markers ; Genomes ; Humanities and Social Sciences ; Humans ; Microsatellite Instability ; Microsatellites ; multidisciplinary ; Mutation ; Mutation Rate ; Paraffin ; Prognosis ; Science ; Science (multidisciplinary) ; Survival ; Tumors</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.18093-9, Article 18093</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-8092df699d80a8e25ed531465639d5df01e71a20ed69f3343862de1fc674d1c43</citedby><cites>FETCH-LOGICAL-c540t-8092df699d80a8e25ed531465639d5df01e71a20ed69f3343862de1fc674d1c43</cites><orcidid>0000-0002-7369-8388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2321214559/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2321214559?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31792358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Reig, Raquel</creatorcontrib><creatorcontrib>Fernández-Serra, Antonio</creatorcontrib><creatorcontrib>Romero, Ignacio</creatorcontrib><creatorcontrib>Zorrero, Cristina</creatorcontrib><creatorcontrib>Illueca, Carmen</creatorcontrib><creatorcontrib>García-Casado, Zaida</creatorcontrib><creatorcontrib>Poveda, Andrés</creatorcontrib><creatorcontrib>López-Guerrero, José Antonio</creatorcontrib><title>Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Endometrial Cancer (EC) is one of the most common malignancies in women in developed countries. Molecular characterization of different biotypes may improve clinical management of EC. The Cancer Genome Atlas (TCGA) project has revealed four prognostic EC subgroups: POLE, MSI; Copy Number Low (CNL) and Copy Number High (CNH). The goal of this study was to develop a method to classify tumors in any of the four EC prognostic groups using affordable molecular techniques. Ninety-six Formalin-Fixed Paraffin-embedded (FFPE) samples were sequenced following a NGS TruSeq Custom Amplicon low input (Illumina) protocol interrogating a multi-gene panel. MSI analysis was performed by fragment analysis using eight specific microsatellite markers. A Random Forest classification algorithm (RFA), considering NGS results, was developed to stratify EC patients into different prognostic groups. Our approach correctly classifies the EC patients into the four TCGA prognostic biotypes. The RFA assigned the samples to the CNH and CNL groups with an accuracy of 0.9753 (p &lt; 0.001). The prognostic value of these groups was prospectively reproduced on our series both for Disease-Free Survival (p = 0.004) and Overall Survival (p = 0.030).Hence, with the molecular approach herein described, a precise and suitable tool that mimics the prognostic EC subtypes has been solved and validated. Procedure that might be introduced into routine diagnostic practices.</description><subject>45</subject><subject>45/22</subject><subject>45/23</subject><subject>692/4017</subject><subject>692/4028/67/1517/1931</subject><subject>692/53/2422</subject><subject>Artificial Intelligence</subject><subject>Biotypes</subject><subject>Cancer</subject><subject>Classification</subject><subject>Copy number</subject><subject>Developed countries</subject><subject>Endometrial cancer</subject><subject>Endometrial Neoplasms - diagnosis</subject><subject>Endometrial Neoplasms - genetics</subject><subject>Endometrium</subject><subject>Female</subject><subject>Genetic markers</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Microsatellite Instability</subject><subject>Microsatellites</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation Rate</subject><subject>Paraffin</subject><subject>Prognosis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Survival</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1PFjEUhRujEYL8ARemiRs3o_2ct92YGCJgQpREXTelvTMUO-3YziD8ewovIrqwmza5zz235x6EXlLylhKu3lVBpVYdobqTomeiu3qCdhkRsmOcsaeP3jtov9YL0o5kWlD9HO1wutGMS7WLfpyWPKZcl-Cwi7bWMARnl5ATzgOG5PMESwk2YmeTg4LXGtKILZ5yBLdGW7Cd55KtO8dntoLHrdPi5RfES-hGSIA_H33Fs00QX6Bng40V9u_vPfT98OO3g-Pu5MvRp4MPJ52TgiydIpr5odfaK2IVMAlecip62XPtpR8IhQ21jIDv9cC54KpnHujg-o3w1Am-h95vdef1bALvIC3FRjOXMNlybbIN5u9KCudmzJemV0q3FTWBN_cCJf9coS5mCtVBjM1FXqtpWyVqQ5UiDX39D3qR15KavVuKMiqk1I1iW8qVXGuB4eEzlJjbOM02TtPiNHdxmqvW9OqxjYeW3-E1gG-B2kpphPJn9n9kbwAqTKxy</recordid><startdate>20191202</startdate><enddate>20191202</enddate><creator>López-Reig, Raquel</creator><creator>Fernández-Serra, Antonio</creator><creator>Romero, Ignacio</creator><creator>Zorrero, Cristina</creator><creator>Illueca, Carmen</creator><creator>García-Casado, Zaida</creator><creator>Poveda, Andrés</creator><creator>López-Guerrero, José Antonio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7369-8388</orcidid></search><sort><creationdate>20191202</creationdate><title>Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel</title><author>López-Reig, Raquel ; Fernández-Serra, Antonio ; Romero, Ignacio ; Zorrero, Cristina ; Illueca, Carmen ; García-Casado, Zaida ; Poveda, Andrés ; López-Guerrero, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-8092df699d80a8e25ed531465639d5df01e71a20ed69f3343862de1fc674d1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45</topic><topic>45/22</topic><topic>45/23</topic><topic>692/4017</topic><topic>692/4028/67/1517/1931</topic><topic>692/53/2422</topic><topic>Artificial Intelligence</topic><topic>Biotypes</topic><topic>Cancer</topic><topic>Classification</topic><topic>Copy number</topic><topic>Developed countries</topic><topic>Endometrial cancer</topic><topic>Endometrial Neoplasms - diagnosis</topic><topic>Endometrial Neoplasms - genetics</topic><topic>Endometrium</topic><topic>Female</topic><topic>Genetic markers</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Microsatellite Instability</topic><topic>Microsatellites</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation Rate</topic><topic>Paraffin</topic><topic>Prognosis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Reig, Raquel</creatorcontrib><creatorcontrib>Fernández-Serra, Antonio</creatorcontrib><creatorcontrib>Romero, Ignacio</creatorcontrib><creatorcontrib>Zorrero, Cristina</creatorcontrib><creatorcontrib>Illueca, Carmen</creatorcontrib><creatorcontrib>García-Casado, Zaida</creatorcontrib><creatorcontrib>Poveda, Andrés</creatorcontrib><creatorcontrib>López-Guerrero, José Antonio</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Reig, Raquel</au><au>Fernández-Serra, Antonio</au><au>Romero, Ignacio</au><au>Zorrero, Cristina</au><au>Illueca, Carmen</au><au>García-Casado, Zaida</au><au>Poveda, Andrés</au><au>López-Guerrero, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-02</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>18093</spage><epage>9</epage><pages>18093-9</pages><artnum>18093</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Endometrial Cancer (EC) is one of the most common malignancies in women in developed countries. Molecular characterization of different biotypes may improve clinical management of EC. The Cancer Genome Atlas (TCGA) project has revealed four prognostic EC subgroups: POLE, MSI; Copy Number Low (CNL) and Copy Number High (CNH). The goal of this study was to develop a method to classify tumors in any of the four EC prognostic groups using affordable molecular techniques. Ninety-six Formalin-Fixed Paraffin-embedded (FFPE) samples were sequenced following a NGS TruSeq Custom Amplicon low input (Illumina) protocol interrogating a multi-gene panel. MSI analysis was performed by fragment analysis using eight specific microsatellite markers. A Random Forest classification algorithm (RFA), considering NGS results, was developed to stratify EC patients into different prognostic groups. Our approach correctly classifies the EC patients into the four TCGA prognostic biotypes. The RFA assigned the samples to the CNH and CNL groups with an accuracy of 0.9753 (p &lt; 0.001). The prognostic value of these groups was prospectively reproduced on our series both for Disease-Free Survival (p = 0.004) and Overall Survival (p = 0.030).Hence, with the molecular approach herein described, a precise and suitable tool that mimics the prognostic EC subtypes has been solved and validated. Procedure that might be introduced into routine diagnostic practices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31792358</pmid><doi>10.1038/s41598-019-54624-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7369-8388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.18093-9, Article 18093
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6889294
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 45
45/22
45/23
692/4017
692/4028/67/1517/1931
692/53/2422
Artificial Intelligence
Biotypes
Cancer
Classification
Copy number
Developed countries
Endometrial cancer
Endometrial Neoplasms - diagnosis
Endometrial Neoplasms - genetics
Endometrium
Female
Genetic markers
Genomes
Humanities and Social Sciences
Humans
Microsatellite Instability
Microsatellites
multidisciplinary
Mutation
Mutation Rate
Paraffin
Prognosis
Science
Science (multidisciplinary)
Survival
Tumors
title Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20classification%20of%20endometrial%20cancer%20using%20a%20molecular%20approach%20based%20on%20a%20twelve-gene%20NGS%20panel&rft.jtitle=Scientific%20reports&rft.au=L%C3%B3pez-Reig,%20Raquel&rft.date=2019-12-02&rft.volume=9&rft.issue=1&rft.spage=18093&rft.epage=9&rft.pages=18093-9&rft.artnum=18093&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-54624-x&rft_dat=%3Cproquest_pubme%3E2320871880%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-8092df699d80a8e25ed531465639d5df01e71a20ed69f3343862de1fc674d1c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321214559&rft_id=info:pmid/31792358&rfr_iscdi=true